ATOMIC LAYER DEPOSITION AND TARGETED APPLICATION AREAS

Contact

Fraunhofer Institute for Electronic Nano Systems ENAS
Technologie-Campus 3
09126 Chemnitz | Germany

Contact persons

Prof. Dr. Stefan E. Schulz
Phone: +49 371 45001-232
E-mail: stefan.schulz@enas.fraunhofer.de

Dr. Ramona Ecke
Phone: +49 371 45001-281
E-mail: ramona.ecke@enas.fraunhofer.de

Available Equipment

- 100 mm single-wafer tool with 2 liquid delivery systems and 2 bubblers
- Roth & Rau 200 mm multi-chamber tool with two ALD chambers, each with:
 - 2 Direct Liquid Injection Systems
 - 2 Liquid Delivery Systems

In vacuo XPS and *in situ* Raman spectroscopy available on the system as well as CVD for carbon nanotubes (CNTs) and ion-beam sputter deposition.

ALD Materials and Application Areas

1. **Metals**
 - **Copper**
 - Seed layers for metallization of nanoelectronic interconnect systems and through-silicon vias (TSVs) in 3D integration
 - Functionalization of CNTs and CNT integration in metallization systems
 - Non-magnetic layer in GMR stacks

 - **Nickel**
 - Liner and seed layer in interconnect systems and for TSV metallisation
 - Ferromagnetic film in magnetic/spintronic film systems
 - Functionalization and metallization of CNTs

2. **Metal Oxides**
 - **Copper Oxide**
 - Intermediate stage for ALD of copper
 - Functionalization of CNTs, e.g. for sensors

 - **Nickel Oxide**
 - Intermediate stage for ALD of nickel
 - Functional film in magnetic/spintronic film systems
 - Functionalization of CNTs, e.g. for sensors

 - **Aluminum Oxide**
 - Passivation layer, e.g. for MEMS, electronic devices, solar cells
 - Dielectric with high permittivity, e.g. for storage/memory applications
 - CNT functionalization

3. **Metal Nitrides**
 - **Titanium Nitride**
 - Diffusion barriers against copper diffusion in nanoelectronic interconnect systems and TSVs for 3D integration
 - Hard coatings/abrasion protection for MEMS

Figures:

STEM image of ECD Cu fill on a TaN/Ru stack prepared by PVD with Cu seed deposited by ALD. (left); ALD copper oxide integrated with sputtered nickel films. (center); Functionalization of carbon nanotubes by ALD. (right)
Working Areas

<table>
<thead>
<tr>
<th>Interconnects</th>
<th>Spintronics</th>
<th>3D Nanostructures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seed
Barrier
SiO₂ or ULK Cap</td>
<td>▪ Antiferromagnet (e.g., NiO)
▪ Ferromagnet (e.g., Ni, Co)
▪ Non-magnetic conductor (Cu)
▪ Ferromagnet (e.g., Ni, Co)
Substrate</td>
<td>▪ Functionalization of 3D nanostructures by ALD coating with conformal layers or nanoparticles, e.g.:
▪ CNTs
▪ Nanowires
▪ Porous materials</td>
</tr>
</tbody>
</table>

- ALD Cu seed layers for ULSI interconnects
- Development of ALD processes for liner deposition (e.g., Co, Ni)

![Typical GMR spin valve layer stack](image)

- ALD utilization for spintronic devices, such as GMR sensor systems

![SEM top view images](image)

- Pristine sample

![SEM images of vertically aligned MWCNTs in via holes](image)

Figure: Roth&Rau 200 mm multi-chamber tool for in vacuo processing. (left); ALD modul with direct liquid injection systems (Vapbox 500, Kemstream). (right)

Photo acknowledgments: Fraunhofer ENAS

All information contained in this datasheet is preliminary and subject to change. Furthermore, the described systems, materials and processes are not commercial products.