Printing of Electrical Functional structures using additive technologies

Frank Roscher, Tobias Seifert, Nooshin Saeidi, Tom Enderlein, Franz Selbmann, Ralf Zichner, Enrico Sowade, Mario Baum and Maik Wiemer

Chemnitzer Seminar “System integration Technologies” 2016
Outline

1. Technologies / Materials / Process Flow
 1. Aerosol-Jet-Deposition & Screen Printing
 2. Paste formulation for screen printing and application example
2. Selected R&D topics
3. Further Application examples
4. Further printing capabilities
1. Technologies / Materials / Process Flow

Aerosol-Jet-Printing Deposition Technology for Nanoparticle inks

Equipment @ ENAS

- Customized Optomec AJ300 System
- 300 x 300 mm x-y-Vacuum stage
- Print Speed: max. 200 mm/s

- 2 Atomizer systems:
 - 2 x Pneumatic Atomizer incl. Mixing option
 - [1cP – 1000cP]
 - Ultrasonic Atomizer
 - [1cP – 5cP, from 1ml Fluid]

- 200°C Substrate heater
- Min. line width 10 µm to 20 µm
- Laser-Curing-System included [IR Laser, 700mW, 830nm] and material mixing option
1. Technologies / Materials / Process Flow

Aerosol-Jet-Printing General Work Flow

A & B: Producing Aerosol by A: Ultrasonic or B: Pneumatic Atomizer Systeme

C: Focusing Material Beam in printhead and direct maskless deposition on substrate

Fig 2: General Workflow overview
1. Technologies / Materials / Process Flow

Aerosol-Jet-Printing General Work Flow

![Diagram of aerosol-jet-printing process flow]

Fig 3: Focused material beam over several millimeters enables deposition on 3D substrates without moving z-axes, diagram shows constant line width between 1mm to 3mm distance between printhead and substrate [Source: Optomec]

Fig 4: Examples for Ag deposition on 3D surfaces [deep etched cavities in Si Wafers]
1. Technologies / Materials / Process Flow

Screen Printing General Work Flow

- Screen mask works as stencil
- Mesh made from polymers or metals
- Screen openings represent printable pattern
- Squeegee transfers paste through screen openings onto substrate
1. Technologies / Materials / Process Flow

Screen Printing Equipment

Reprint R29 Spectrum

- Screen frame: 736 x 736 mm (29" x 29") to 736 x 812 mm (29" x 32")
- Camera alignment
- Fully automated vision system
- Registration +/- 10 µm

DEK Horizon 03iX

- Screen frame: 736 x 736mm (29" x 29") standard
- Printable Area (510mm x 508.5mm)
- Modul for Via Filling
- Modul for Dispensing
- Vector Guard stencil printing
- Machine Alignment >2 Cpk @ +/- 12.5µm, 6 Sigma
- Process Alignment >2 Cpk @ +/- 25µm, 6 Sigma

Morphology: Lateral 50 µm - 150 mm; Vertical 10 µm - 1 mm
1. Technologies / Materials / Process Flow

Metal Nanoparticle Inks Overview Sintering Process

Nanoparticle Inks – Post-treatment and sintering

- Suspensions of metal particles in solvents
- Pretreatment for dense layer and electrical conductivity:
 - Drying out solvents, burning out organic shells, sintering

Sintering without pressure

- Particle necking due to diffusion effects

Experimental Setup

- Sintering of Ag Nanoparticles and SEM investigation at different temperature steps

Fig 3: Nanoparticle filled Ink, Drying out solvents, burning out organic shells, sintering

Fig 4: 2 Particle Model [J. I. Frenkel (1945)]

Fig 5: SEM Investigation - Sintering of Ag Nanoparticles and grain size at 60°C, 100°C, 200°C, 250°C, 300°C
1. Technologies / Materials / Process Flow

Paste formulation for Screenprinting

Paste Particle characterization

Paste manufacturing and characterization

Application test magnetic pastes
1. Technologies / Materials / Process Flow

Paste formulation for Screen printing

Using magnetic paste for screen printing a MEMS speaker (electromagnetic actuation) was demonstrated.

Deposition → Curing 120 °C, 30 min → Magnetization → Integrated permanent magnet

Magnetic paste

SEM image of NdFeB particles

MEMS Speaker

Metallic glass membrane

Ø 1 mm
100...150 μmT
3. R&D Focus

1. Printed RDLs for polymer substrates

Concept

Printing conductive fine pitch multilayers for a variety of substrates materials enable smart systems

Needed:

- Fine pitch, 3D ready deposition process for conductive materials
- Conformal dielectric coating technology for 3D substrates
- Process for via fabrication to enable multilayers

Low temperature processes < 150°C to enable the usage of sensitive / polymer / low cost substrates
Motivation for Parylene:

- Deposition at ambient temperatures (no thermal stresses)
- Pinhole-free at d > 0.2µm
- Uniform layer thickness, in particular at edges, excellent gap penetration
- No solvent or catalyst required
- Yield of 100% monomer above 550°C in vacuum (using [2,2]p-cyclophane)
- No by-products
- Batch process for high throughput
- Bio compatible - medicine products

Gorham Process

- 3 step deposition
- Polymerization @ Roomtemperature (condensation)
3. R&D Focus

1. Printed RDLs for polymer substrates

Parylene Properties

- Conformal coating on Waferlevel < 10% thickness variation developed
- Conformal coating for high aspect ratio patterns
- Highly transparent
- Ar plasma pretreatment enables printing process
- Good moisture barrier

<table>
<thead>
<tr>
<th>Properties of Parylene C</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting point</td>
<td>290°C</td>
</tr>
<tr>
<td>Temperature stability</td>
<td>125°C</td>
</tr>
<tr>
<td>Peak Temperature</td>
<td>200°C</td>
</tr>
<tr>
<td>Water absorption in 24h</td>
<td>0.06%</td>
</tr>
</tbody>
</table>
3. R&D Focus

1. Printed RDLs for polymer substrates

Laser-Workstation with two laser sources

Picosecond Laser with four wavelengths
→ for micro-structuring

<table>
<thead>
<tr>
<th>Wavelength</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>266nm</td>
<td>10W</td>
</tr>
<tr>
<td>355nm</td>
<td></td>
</tr>
<tr>
<td>532 nm</td>
<td></td>
</tr>
<tr>
<td>1064 nm</td>
<td></td>
</tr>
</tbody>
</table>

Thulium-Fiber-Laser (CW)
→ for welding

<table>
<thead>
<tr>
<th>Wavelength</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>1908 nm</td>
<td>20W</td>
</tr>
</tbody>
</table>

→ Structuring of almost any material for various applications
3. R&D Focus

1. Printed RDLs for polymer substrates

1. Substrate cleaning

2. 1st layer Parylene deposition (optional)

3. Pretreatment to enable printability on Parylene + 1st layer Ag deposition and sintering

4. 2nd layer Parylene deposition

5. Laser ablation / via drilling for interconnects

6. Pretreatment to enable printability on Parylene + 2nd layer Ag deposition
3. R&D Focus

1. Printed RDLs for polymer substrates

Laser Ablation of Parylene on top of printed Ag

FIB Cross Section

FIB Cross Section Investigation

- Conformal Parylene Coating
- No Ag ablation visible
- Sidewall effects of laser ablation visible

→ Parylene thickness increasing
→ Some defects near Parylene sidewall visible
3. R&D Focus

1. Printed RDLs for polymer substrates

Via Results

2nd layer Ag printing to fill vias, sintering

- Electrical Testing

- Via resistance $[50\mu m \times 200\mu m] < 10 \, \Omega$ after fabrication
- Thermal cycling (-55/125°C, 30min) performed

→ After >300 cycles resistance is stable with around $5 \, \Omega$ / Interconnect due to additional sintering
3. R&D Focus

1. Low temperature Wafer level Bonding using metal nanoparticles

Process Flow

- Adhesion promoter deposition (PVD) Au or Cu [1]
- AJ Printing of Ag Nanoparticles[2]
 - Goal: Bondframes with less than 100µm in width
- Wafer level Bonding [3]

Si Wafer with Au adhesion promoter and printed Ag Bondframes

schematic process flow
3. R&D Focus

1. Low temperature Wafer level Bonding using metal nanoparticles

Conclusion for all bonds (for all temperatures 350°C to 200°C and Au / Cu adhesion layer) today → hermetic sealing using Ag Nanoparticle intermediate layer not possible but mechanical bond is successful

Reasons: porous interface and inhomogeneous thickness of Bondframe due to printing process at start and endpoint of printed microstructures

FIB&SEM investigations at the Interface Au-Ag-Au, 250°C: Ag layer is fully wetting the Au adhesion promoter, porous interface

FIB&SEM investigations at the Interface Au-Ag-Au, 200°C: Ag layer is fully wetting the Au adhesion promoter, pore size increasing, diffusion Au – Ag visible using EDX
3. R&D Focus

1. Low temperature Wafer level Bonding using metal nanoparticles

Analogue process was developed for screen printing technology using Au Nanoparticles:

- Applied bond pressure 6.5kN
- Bonding Temperature 200°C
 → High densification within the Bondframe
 → 100% yield after dicing
 → Hermeticity evaluations ongoing
4. Further Application Scenarios
using 3D suitable deposition technology for Nanoparticle Inks

- Printed Sensors (Au Nanoparticles) on low cost substrates
- High density 3D MID Substrates by additive manufacturing
- Printed Interconnects for stacked components
- Flexible Electronics
- Joining (WLB and CLP) using Nanoparticle intermediate layers – low sintering temperature enables Bonding < 250°C
4. Further printing capabilities
upscaling and R2R manufacturing (i.e. printed RFID Antennas)
4. Further printing capabilities
institute for print and media technologies TUC

...this is what we do: Printing beyond color – printed functionalities

Printed antennas – planar and 3D
Printed batteries
Printed sensors
Printed transistors
Printed SAMs
Printed photonics
Printed microsieves
Printed pillars

Thank you for the kind attention

Contact:

Frank Roscher
Frank.Roscher@enas.fraunhofer.de

Fraunhofer ENAS
Department System Packaging
Technologie Campus 3
09126 Chemnitz
Germany

We would be pleased to cooperate with you in European or German national projects as well as direct cooperation and technology transfer

Service offers:

- Paste/Ink formulation screen printing and Aerosol-Jet
- Testing of inks/pastes (printability, electricaly, reliability, adhesion,...)
- Design and feasibility studies
- Workshops and training to enable technology transfer