The particular strength of the Fraunhofer Institute for Electronic Nano Systems ENAS lies in the development of smart integrated systems for different applications. Such systems combine electronic components with nano and micro sensors as well as actuators and communication units. More and more these are autonomous systems with an own energy supply or energy harvester.

Fraunhofer ENAS develops single components, technologies for their manufacturing as well as system concepts and system integration technologies and transfers them into production. That means, the institute offers research and development services from the idea, via design and technology development or realization based on established technologies to tested prototypes.

Smart systems not only unite multiple technologies, they address various application sectors and societal challenges, like a secure energy supply, sustainable transport, sustainable production, and securing of health and wellbeing. They are a key technology looking at industry 4.0, internet of things, smart mobility or smart home.

With this working field Fraunhofer ENAS supports the research and development of many small and medium sized companies as well as large scale industry. Moreover Fraunhofer ENAS has established a strategic network with research institutes and universities in Germany and worldwide.

During the centuries after Gutenberg introduced printing on paper as the technology to distribute information extensively, the printers perfected their technologies to convince the human eye that the well defined cloud of tiny printed color screen dots appears as halftone images.

Therefore, the traditional printing processes gravure, offset, flexo and screen printing as well as the digital printing technologies xerography and inkjet are well developed techniques to transfer ink dots onto fiber based substrates, plastic foil or even sheet metal with a very high precision.

The department Printed Functionalities capitalizes on these experiences and focuses on printing technologies and processes for the manufacture of printed products which do not solely address the human visual sense. These products will be equipped with functionalities beyond color, e.g. electrical conductivity and semiconductivity, optimized porosity or even electric power. With these functionalities they will be able to perceive their surroundings and their own state, save these data and communicate them via computer networks with other members of the “Internet of Things”.

We expect a growing number of printed functionalities which in many applications will be supplemented by silicon based micro sources with high flexibility in regard to thickness, geometrical shape, voltage, capacity and weight. Applying the appropriate functional materials onto flexible substrates using printing technologies will open promising opportunities to integrate e.g. batteries into ductile products.

One of the main research areas of the department Printed Functionalities is the printed thin film battery developed in close cooperation with the Digital Printing Group of the Technische Universität Chemnitz (TUC) and industrial partners.

These printed battery cells exhibit a nominal voltage of 1.5 V, are typically 0.8 mm thin and weights about 1 g. The single cells can be chained easily therefore printed batteries with voltages that are multiples of 1.5 V are built easily. The batteries are made from flexible plastic foil which allows manufacturing them in a roll-to-roll printing process. All the materials used are readily available, inexpensive and without environmental risks as they are free of mercury or other toxic materials. The latter properties stand for easy end-of-life treatment without special recycling logistics.

The highest profile in the media reached the printed battery when the New York Times Magazine listed this battery among the top five technology achievements of the year 2009. Furthermore, the non-governmental Responding to Climate Change organisation (RTCC) accredited as an official observer to the United Nations Framework Convention on Climate Change (UNFCCC) selected the printed battery for its 2010 report. This report was presented to the United Nations Climate Change Conference in Cancun, Mexico, in December 2010.

Project results based on our battery technology have been awarded twice by the OE-A as “Best Publicly Funded Project Demonstrator” @ LOPE-C 2013 and LOPEC 2014.
Radio Frequency Identification Technology (RFID)

In addition to microsystems technology and consumer electronics, Radio Frequency Identification technology (RFID) is one of the focal areas in the field of Printed Functionalities. Especially the development of printable antennas, adapted to the dedicated dielectric environment of the tagged item and attached to regular silicon RFID chips, will contribute to the single item tagging of different objects – either of our everyday’s life or as members of industrial supply chains – remarkably. In order to characterize the communication quality of these printed RFID tags an electromagnetic shielded measuring environment without any reflections is definitely needed. Such an environment – an anechoic chamber – was built by Fraunhofer ENAS in 2009.

One of the major aims of the department Printed Functionalities is to foster the development of customized and low cost printed antennas for various and sometimes critical dielectric environments including metallic objects and liquid containing casks. An anechoic chamber – was built by Fraunhofer ENAS in 2009.

One of the major aims of the department Printed Functionalities is to foster the development of customized and low cost printed antennas for various and sometimes critical dielectric environments including metallic objects and liquid containing casks. An anechoic chamber – was built by Fraunhofer ENAS in 2009.

One of the major aims of the department Printed Functionalities is to foster the development of customized and low cost printed antennas for various and sometimes critical dielectric environments including metallic objects and liquid containing casks. An anechoic chamber – was built by Fraunhofer ENAS in 2009.

One of the major aims of the department Printed Functionalities is to foster the development of customized and low cost printed antennas for various and sometimes critical dielectric environments including metallic objects and liquid containing casks. An anechoic chamber – was built by Fraunhofer ENAS in 2009.

One of the major aims of the department Printed Functionalities is to foster the development of customized and low cost printed antennas for various and sometimes critical dielectric environments including metallic objects and liquid containing casks. An anechoic chamber – was built by Fraunhofer ENAS in 2009.

Hybrid Roll-to-Roll Manufacturing System

Printing functional material is only one process step within the workflow process. Therefore we started the development of a machine concept on basis of the 3D-Micromac AG modular machine concept microFLEX™. This machine enables us to embed new processing technologies as they become necessary either inside the already existing machine or by adding just another module. The web width is up to 30 cm and the web speed up to 20 m/min (dependent on the process parameters).

The current machine consists of: unwinding, web guide roll, optical mark detection, rotary screen printing, inkjet printing, LED UV curing, IR heating, photonic sintering and rewinding. For the inkjet printing a close cooperation with Fujifilm Dimatix is established. For the photonic sintering a Novacentrix® PulseForge® 3200 module is installed in the machine.

Substrates as PET foil or paper has been used to manufacture printed antenna systems as well as conductive patterns based on e.g. silver or copper inks. At the end of the process the printed and cured/sintered structures are rewound. The functionality of RFID transponders built from copper patterns has been demonstrated.

Inkjet-Technikum

The Fraunhofer ENAS department Printed Functionalities and the Digital Printing Group of the Technische Universität Chemnitz (TUC) are equipped with most modern digital and traditional printing systems forming the digital Inkjet-Technikum. The installed digital printing equipment is made by leading companies such as Fujifilm Dimatix and XAAR. However, the equipment not only includes inkjet technology but also the integration of this technology into traditional printing systems. The combination of inkjet, gravure and/or screen printing and laser based patterning and conversion techniques in the ENAS labs results in hybrid-printing systems and highly flexible digital fabrication machinery as part of the equipment of the Inkjet-Technikum. It is under ongoing development in close cooperation with leading industrial machine builders and it is open to use by interested R&D partners.

This Inkjet-Technikum does not only allow joint projects with partners but also provides a chance for all size of companies to take first steps into the field of printed electronics and digital fabrication without the need of risking own investment. Furthermore, interested partners are welcome to do training on certain pieces of equipment.

We offer the following services:

- precise deposition of liquid processible materials to form layers with defined properties, utilizing printing technologies
- specific employment of inkjet techniques for resources-saving, additive material deposition
- printing-workflow development to optimize the manufacture of new functionalities
- material and layer characterization: viscosity, surface tension, morphology, electronic properties, layer zoning, layer interaction
- SEM & EDX analysis
- tactile surface profilometry
- development of innovative components for specific applications based on printing technologies, e.g. flexible energy/battery systems
- tailoring of applications employing printed batteries
- printing of conducting patterns, e.g. as antennas or electrodes
- design, simulation, printing and measurement of customized antennas.

Our development partners:

- FUJIFILM Dimatix SAMBA™ Printbar
- microFLEX™ machinery (3D Micromac)
- Integrated Novacentrix PulseForge® 3200 module
Drucker nutzen heute sehr zuverlässige Technologien für die Herstellung hochwertiger Druckprodukte, mit denen fast aus schließlich der visuelle Sinn des Menschen adressiert wird. In Zukunft werden die Druckprodukte über die Farbigkeit hinaus weitere Funktionalitäten besitzen, mit denen sie z. B. ihre Umgebung wahrnehmen und mit Computernetzen kommunizieren können. Der Schlüssel für die Verfügbarkeit geeigneter industrieller Produktionsanlagen für diese gedruckten „Smart Objects“ liegt in der interdisziplinären Entwicklung von komplexen Druckstoffen, ihrer Applikation in Fertigungsprozessen und Maschinenystemen unter Einbeziehung neuer, digitaler Fertigungstechniken.

Radio Frequency Identification (RFID)

Hybride Fertigung

Radio Frequency Identification (RFID)

Radio Frequency Identification (RFID)
Contact details:

Fraunhofer Institute for Electronic Nano Systems ENAS
Department Printed Functionalities

Technologie-Campus 3
09126 Chemnitz
Germany

Head of the department Printed Functionalities:
Dr. Ralf Zichner
Phone: +49 371 45001-441
Fax: +49 371 45001-541

Email: ralf.zichner@enas.fraunhofer.de
Internet: www.enas.fraunhofer.de/EN

Title page:
Roll-to-roll printed copper patterns on paper web