Contents

Organization 3
Chairs of the Center for Microtechnologies 4
 Chair Microtechnology 4
 Chair Microsystems and Precision Engineering 6
 Chair Circuit and System Design 8
 Chair Electronic Devices of Micro and Nano Technique 10
 Chair Electrical Measurements and Sensor Technology 12
 Chair Power Electronics and Electromagnetic Compatibility 14
 Chair Materials and Reliability of Microsystems 16
Honorary Professors 18
Equipment and service offers 20
 Department Lithography/Etch/Mask 20
 Department Layer Deposition 21
Education 24
Cooperations 27
 Cooperation within Center of Competences 28
 Cooperation within the IRTG 1215 30
Networks 32
Contact 34
The Center for Microtechnologies (ZfM), founded in 1991, belongs to the department of Electrical Engineering and Information Technology of the Chemnitz University of Technology (CUT). It is the basis for education, research and developments in the fields of micro and nanoelectronics, micro mechanics and microsystem technologies in close cooperation with various chairs of different CUT departments.

The ZfM’s predecessor was the “Technikum Mikroelektronik” which was established in 1979 as a link between university research and industry. For that reason the Chemnitz University of Technology has a tradition and experience for more than 30 years in the fields of microsystem technology, micro and nanoelectronics, as well as opto-electronics and integrated optics.

The key of success is the interdisciplinary cooperation of different chairs within the ZfM. The board of directors consists of:

- Chair Microtechnology - Prof. Gessner
- Chair Microsystems and Precision Engineering - Prof. Mehner
- Chair Circuit and System Design - Prof. Heinkel
- Chair Electronic Devices of Micro and Nano Technique - Prof. Horstmann
- Chair Electrical Measurement and Sensor Technology - Prof. Kanoun
- Chair Power Electronics and Electromagnetic Compatibility - Prof. Lutz
- Chair Materials and Reliability of Microsystems - Prof. Wunderle.

Additionally two departments belong to the ZfM, the department Lithography/Etch/Mask as well as the department Layer Deposition. The ZfM facilities include 1000 m² of clean rooms, whereby 300 m² of them belong to cleanroom class ISO4. Modern equipment was installed for processing of 4”, 6” and 8” wafers.

The ZfM carries out basic research, practical joint projects and direct research & development orders for the industry in the following fields:

- Basic technologies and components for microsystems and nanosystems (sensors, actuators, arrays, back-end of line)
- Design of components and systems
- Nanotechnologies, nano components and ultrathin functional layers

Within the last years a very strong cooperation has been established with the Fraunhofer Research Institution for Electronic Nano Systems ENAS and the other partners within the Smart Systems Campus Chemnitz.

Please visit our homepage:
http://www.zfm.tu-chemnitz.de/

President of the Board
Prof. Dr. Thomas Gessner
Phone: +49 (0) 371 531-24060

Deputy of the President
Dr. Karla Hiller
Chair Microtechnology

Special attention is paid to Si-based MEMS technologies:

- Bulk technology
- High aspect ratio technologies, e.g., air gap insulated microstructures (AIM technology)
- Encapsulation by wafer bonding
- Encapsulation by thin film technology

Several high aspect ratio MEMS technologies, such as the patented AIM technology or the BDRIE (Bonding and Deep RIE) technology, have been established in order to fabricate high precision inertial sensors, e.g., acceleration, vibration and inclination sensors as well as gyroscopes. For example, low g acceleration sensors fabricated by AIM technology exhibit an outstanding performance regarding noise density (20 µg/Hz^{1/2}) and temperature stability (< 0.025%/K). By involving a two-step anisotropic dry etching in these technology flows, electrode configurations with different height can be realized, Fig. 1. They enable out-of-plane operation modes in addition to the in-plane modes, hereby contributing to three-dimensional motion sensing, which is presently under investigation.

Besides various wafer bonding methods for zero level packaging of the MEMS, a thin film encapsulation technology has been developed and proven. A thin layer stack of oxide and nitride (and optionally a metal such as Al) is covering and protecting the active part of the HAR sensor, Fig. 2. A CF polymer is used as a sacrificial layer, which exhibits selective dry sacrificial layer etch process with high etch rates (in oxygen plasma). This newly developed thin film cap shrinks the vertical dimension of the cap down to about 10 µm and contributes to lateral shrinking too, as no bonding frames are required.

Selected publications:

Fig. 1: Comb drive (teeth with different height) for vertical excitation

Fig. 2: Thin film cap over a HAR sensor structure

Fig. 3: Microspectrometer demonstrator setup based on MEMS FPI by courtesy of InfraTec GmbH Dresden
Chair Microsystems and Precision Engineering

The Chair of Microsystems and Precision Engineering is mainly focused on design and experimental characterization of micro-electro-mechanical systems (MEMS) and their applications. Innovative technologies are investigated in order to link mechanics, optics, electrical engineering and electronics for highly integrated smart systems. Therefore the second focus is on precision engineering.

Main working fields:

- Modeling and simulation of physical domains and their interactions
- Experimental characterization and measurement methodologies
- Sensor and actuator development
- Wireless communication and energy scavenging

Microsystems are key components of complex heterogeneous devices such as automotive products, industrial automation and consumer applications. Academic research and education is strongly related to partners from industry and research institutes (e.g. Fraunhofer Institutes, IPHT Jena, ...).

Contact: Prof. Dr. Jan Mehner
Phone: +49 (0)371 531-24430
Email: jan.mehner@etit.tu-chemnitz.de

Selected Publications:

Fig. 4: Working principle of a medical pressure sensor catheter for esophageal diagnosis

One of the most advanced topics in the field of design is the challenge to establish fast and precise behavioral models for microsystems. Parametric reduced order modeling (ROM) technique, Fig. 1, is the most promising approach to this. The parametric ROM macromodels capture the complex nonlinear dynamics inherent in MEMS due to highly nonlinear electrostatic forces, residual stresses, stress stiffening and supports multiple electrode systems and mechanical contact phenomena. Geometrical nonlinearities, such as stress stiffening, can be taken into account if the modal stiffness is computed from the second derivatives of the strain energy with respect to modal coordinates. The ROM technique based on the mode superposition method is a very efficient technique for fast transient simulation of MEMS components in order to export macromodels for external system simulators.

Fig. 1: Reduced order modeling for microsystems design

This advanced design technique is successfully used for instance for the design of the vibrational sensor shown in Fig. 2.

Fig. 2: Zoomed and colored view of a vibration sensor for machine noise detection

One of the currently running projects is related to a pressure measurement catheter for the human esophagus with high resolution regarding pressure and position. Fig. 3 shows the currently most advanced tool which is a PVM-200 Vacuum Wafer Prober equipped with a Micro System Analyzer MSA 500 enabling dynamic and topographic characterization of MEMS at adjustable vacuum and thermal interference. The MSA uses laser doppler vibrometry with scanning laser beam and stroboscopic illumination for out-of-plane and in-plane motion analysis respectively. White light interferometry allows topographic measurements in vacuum conditions.

Fig. 3: PVM-200 vacuum wafer prober and microsystem analyzer

Other current research projects:

- Development of a parametric ROM technique for precise and fast simulation of microsystems
- Development of test structures based characterization technique for the extraction of critical technological parameters for microsystems on wafer level
- Development of a friction vacuum gauge with an extended measurement range
- Development of a frictional energy harvester
- Development of vibrational energy harvesters
Chair Circuit and System Design

Many different systems have been designed, e.g. systems for real time processing, rapid prototyping systems for image processing, vibration pattern recognition systems and coupling of simulators and emulators. Research areas include:

- System design of heterogeneous microsystems in cooperation with the Chair of Microsystems and Precision Engineering and the Center of Microtechnologies.
- Research work in logic and system design and application of FPGAs and PLDs.
- High performance arithmetic for different special purposes (e.g. MPEG video decoders, image compression, graphic controllers).
- Design of re-usable components and IP (Intellectual Properties), development of design environments for re-usable components and applications.
- Specification capturing, formal specification with interface-based design methods.
- Utilization of fuzzy accelerators for recognition of vibration patterns and classification (noise analysis).
- Development and application of a modular system (including graphical user interface) for real time functions (inspection of textile surfaces, analysis of skin diseases, real time image processing, fuzzy classification systems, controlling of projection systems).
- Design and evaluation of high performance data path components.
- Low power design (system bus encoding techniques for reduced power dissipation).

Although many projects have been processed through the years, there is still a lot of work ahead.

Contact: Prof. Dr. Ulrich Heinkel
Phone: +49 (0)371 531-24310
Email: ulrich.heinkel@eti.tu-chemnitz.de

Main working fields:
- Design of ASICs (Application Specific Integrated Circuits) and FPGAs (Field Programmable Gate Arrays).
- Design of heterogeneous systems (MEMS) in cooperation with the Chairs of the Center for Microtechnologies.
- Formal specification/verification methodologies for digital, analogue and heterogeneous systems with VHDL, VHDL-AMS, SystemC, SystemC-AMS, SystemVerilog.
- Efficient communication (Car2X, application of wireless networks ad-hoc networks, network management, bandwidth reduction with digital image processing, localization algorithms).

During many years of work in the area of circuit and system design, a huge knowledge in application specific integrated circuits (ASIC) design has been accumulated. Special know-how and experience exist in the field of PLD and FPGA (field programmable gate arrays) design and application.

Selected Publications:

Main working fields:

- Sub-50nm-MOS-transistors modeling
- Modeling and simulation of electronic devices for microsystem electronics
- Sensor signal evaluation and actuator control of microsystems
- Matching behavior analysis and characterization of CMOS transistors
- Manufacturing, analysis and characterization of next-generation nanoelectronic devices
- Integrated circuit design for microsystem electronics, especially low noise, low power and high voltage

The main research topics at the Chair of Electronic Devices of Micro and Nano technique are:

- Investigation and evaluation of the trench isolations and characterization of the electrical parameters
- Development of strategies to reduce the statistical parameter fluctuations of very small MOS-transistors
- Simulation and characterization of sub-50nm-MOS-transistors
- Analysis of the physical mechanisms of micro and nanoelectronic devices
- Development of measurement methods for the analysis of the electrical parameters of next generation nano electronic devices
- New circuit concepts for nanoelectronic mechanical systems
- Invention of new materials in the CMOS-process for next generation nano devices.
- Evaluation of In-Die parameter variations, planning of experiments to reduce parameter deviations and assistance for suitable teststructures creation.

The current research projects are:

- Smart-power applications realized by a trench isolation, which contains the design of integrated high-voltage electronics and characterization from high voltage isolation structures to optimize the production technology
- Design of intellectual properties for the MEMS-technologies, currently for a 1µm-CMOS-technology with monolithic integrated pressure sensors
- Development of modern electrical drive systems like electric motors with high efficiency and smart-power-control-concepts
- Development of customized measuring strategies and characterization of In-Die parameter variations for semiconductor structures in nano technologies
- Electrical and physical design of analog and mixed signal standard circuits for the CMOS-process
- Creation of simulation models for SOI-devices
- Investigation and modeling of isolation structures for high-voltage-ICs

Selected publications:

Chair Electrical Measurements and Sensor Technology

Contact: Prof. Dr.-Ing. Olfa Kanoun
Phone: +49 (0)371 531-36931
Email: kanoun@ieee.org

Main research focus:
- Impedance spectroscopy for measurement systems and sensors
- Energy harvesting and energy autonomous systems
- Sensors based on carbon nanotubes (CNT)

Smart sensor systems provide promising technical solutions which can significantly contribute to an improvement of quality, reliability and economic efficiency of technical systems.

The research activities at the chair for measurement and sensor technology (MST) have a strategic focus on the improvement of measurement and sensor principles, the design of smart sensor systems and the model-based signal processing. The MST-Team is organized in three research groups focusing on impedance spectroscopy, energy harvesting and sensors based on carbon nanotubes.

Impedance Spectroscopy is a powerful measurement method used in many application fields such as electro chemistry, material science, biology and medicine, semiconductor industry and sensors. The possibility to use information in the complex impedance over a wide frequency range leads to interesting opportunities for separating effects, more accurate measurements and measurements of inaccessable quantities. The experience of the chair for measurement and sensor technology in this field includes several methodological contributions involving the main aspects of measurement techniques, physical-chemical modeling and signal processing. Running research projects deal with diagnosis of Li-Ion batteries, material measurements and sensors, Fig. 1.

Energy harvesting is the use of ambient energy to power small electronic devices, making them self-sufficient. It allows the realization of autonomous systems having reduced installation and maintenance costs. A variety of energy conversion principles and technologies can be nowadays adopted to convert temperature differences, vibration or electrostatic energy, Fig. 2. In order to bridge low energy availability, system should be capable to accumulate superfluous energy and to manage energy flows between converter, storage unit and application. Investigations of components and their interaction are of a big importance for the design of systems using ambient energy. The limited efficiency of energy converters, the heavy fluctuations of energy availability changing environmental conditions and the limited capacity of storage units are challenging aspects for the system design. For this purpose, a test platform has been developed, to characterize energy harvesting systems at component and system level. Sophisticated energy management concepts have been developed considering high fluctuations of energy availability.

The technological progress in the field of micro and nano technology allows promising possibilities for new sensors and sensor principles, which will play a key role in future. Novel sensors with outstanding performance can be realized using multi walled and single walled CNTs in different technologies and allowing the measurement of versatile measurement quantities. Different activities are in progress aiming to demonstrate the benefits of CNTs for sensors particularly for mechanical and optical measurement quantities. For example, CNT thin films have been realized for use as strain gauges, Fig. 3. They can be manufactured in different forms, have a high sensitivity and a big measurement range and are self adhesive.

Current research projects focus on:
- Battery diagnosis (state of charge, state of health, state of function)
- Material testing by impedance spectroscopy
- Met quality monitoring by impedance spectroscopy
- Cable testing methods

Selected Publications:
Chairs of the Center for Microtechnologies

Chair Power Electronics and Electromagnetic Compatibility

The main fields of research are:

- Reverse recovery of high power diodes, dynamic avalanche and ruggedness: At high stress conditions in dynamic avalanche, current filaments or filaments occur. Of most importance is the nn+-junction. Designs with improved ruggedness are deduced.

- Surge current capability of power diodes in Si and SiC: Metalization thickness and interconnection pitch of decisive influence.

- Short circuit capability of high voltage IGBTs: Power devices must be capable to withstand extreme high loads at fault conditions. Fig. 2 shows the waveform of a short circuit type III - external short circuit while a freewheeling diode is conducting.

- Long term blocking stability of power devices: A hot reverse test station, DC 2500V, Tj up to 200 °C, has been built and is running.

- Reliability of packaging technologies: The focus is on power cycling. Seven self-build power cycling stations are running. New interconnection technologies for power cycling capability up to 200 °C are investigated.

- Simulation of thermal-mechanical stress in power devices: The analysis shows the local mechanical stresses and strains in the package, which result from the mismatch in the thermal expansion of the material layers, Fig. 4.

- Failure analysis: Electrical measurements, opening of power modules, inspection, if necessary REM analysis etc., failure reports including evaluation.

Fig. 2: Simulated mechanical deformation of a power device and substrate at power cycling, 2-ax 1000x extended.

Fig. 3: Power cycling result of a 1200 V power module for automotive applications. Shown is the thermal resistance Rthjc depending on the No. of cycles. An increase by 20% is rated as failure.

Fig. 4: Simulated temperature and mechanical deformation of a power chip and package layers at power cycling. Deformation scale factor 1000. Dissipated power 236 W/cm², water cooling, coolant temperature 313K. ¼ chip and surrounding layers simulated.

Fig. 5: Partial integration of the power electronic system in the automobile gear unit (EFA-project)

Important research projects:

- Electric components for active gears – EFA, joint project 2006-2010 for increased energy density of the electric components in the power train of a hybrid vehicle

- Advanced Supercaps on base of nano-structured materials - Nanocap, joint project finished in 2008. New materials for electrodes and electrolytes for a new generation of double-layer capacitors have been developed and their reliability was investigated

Selected publications:

Contact: Prof. Dr. Josef Lutz
Phone: +49 (0)371 531-33618
Email: josef.lutz@etit.tu-chemnitz.de

The education covers power devices, thermo-mechanical problems of power electronic systems, power circuits and electromagnetic compatibility. The focus of research is on power devices, especially their reliability. The main fields of research are:

- Surge current capability of power diodes in Si and SiC: Metalization thickness and interconnection pitch are of decisive influence.

- Short circuit capability of high voltage IGBTs: Power devices must be capable to withstand extreme high loads at fault conditions. Fig. 2 shows the waveform of a short circuit type III - external short circuit while a freewheeling diode is conducting.

- Long term blocking stability of power devices: A hot reverse test station, DC 2500V, Tj up to 200 °C, has been built and is running.

- Reliability of packaging technologies: The focus is on power cycling. Seven self-build power cycling stations are running. New interconnection technologies for power cycling capability up to 200 °C are investigated.

- Simulation of thermal-mechanical stress in power devices: The analysis shows the local mechanical stresses and strains in the package, which result from the mismatch in the thermal expansion of the material layers, Fig. 4.

- Failure analysis: Electrical measurements, opening of power modules, inspection, if necessary REM analysis etc., failure reports including evaluation.

Fig. 2: Simulated mechanical deformation of a power device and substrate at power cycling, 2-ax 1000x extended.

Fig. 3: Power cycling result of a 1200 V power module for automotive applications. Shown is the thermal resistance Rthjc depending on the No. of cycles. An increase by 20% is rated as failure.

Fig. 4: Simulated temperature and mechanical deformation of a power chip and package layers at power cycling. Deformation scale factor 1000. Dissipated power 236 W/cm², water cooling, coolant temperature 313K. ¼ chip and surrounding layers simulated.

Fig. 5: Partial integration of the power electronic system in the automobile gear unit (EFA-project)

Important research projects:

- Electric components for active gears – EFA, joint project 2006-2010 for increased energy density of the electric components in the power train of a hybrid vehicle

- Advanced Supercaps on base of nano-structured materials - Nanocap, joint project finished in 2008. New materials for electrodes and electrolytes for a new generation of double-layer capacitors have been developed and their reliability was investigated

Selected publications:

Chair Materials and Reliability of Microsystems

Contact: Prof. Dr. Bernhard Wunderle
phone: +49 (0)371 531-24450
email: bernhard.wunderle@etit.tu-chemnitz.de

The chair „Materials and Reliability of Microsystems“ has been held by Bernhard Wunderle since July 2009. Many of the research and lecturing activities are therefore still being built up.

Lectures:

The professorship is responsible for the scientific education in the field of material science for students of electrical engineering and microelectronics and focuses on the reliability assessment and prediction for micro and nanosystems for graduate students, including the new international master’s program in micro and nano systems.

Research:

Reliability as a scientific discipline is concerned with the analysis, assessment and prediction of the lifetime of microelectronic systems (e.g. of interconnects and interfaces of standard and advanced packages, BEOL-layers, MEMS, 3D-architectures, SIP, etc).

The main challenges involved therein are the handling of the complexity of microsystems (system-reliability), the correlation of degradation to the nanostructure of the materials (nano-reliability) and the generation of lifetime models for the transferability between field and lab testing conditions (definition of accelerated and combined tests).

Reliability prediction crucially hinges upon the correct and accurate description of the respective failure mechanisms. The research therefore comprises the development of lifetime models for microsystems starting from the material level up to the system level, based on the physical understanding of the materials involved in terms of their properties and failure mechanisms as function of their structure and external loading conditions (“physics of failure”).

Material characterization:

• Thermal and mechanical characterization of materials and compounds of microsystems under typical, application-relevant loading conditions such as temperature, moisture and vibration

Fig. 1: Molecular dynamics simulation of cross-linked epoxy resin on SiO2 with H2O molecules to study moisture diffusion and adhesive properties under different temperature and pressure boundary conditions to obtain structure-property correlations

Fig. 2: Finite Element simulation of (asymmetric) crack tip: Stress field to investigate mixed mode crack growth at the interface between silica-filled epoxy resin and a copper surface.

Fig. 3: IR phase image of a mK-temperature field generated during subcritical periodic loading of a crack in PMMA allowing e.g. precise determination of the crack tip position

Chairs of the Center for Microtechnologies

Current Projects:

• EU IP Nanopack: Advanced thermal technologies, materials and characterization methods
• EU STREP Nanointerface: Multiscale approach to interface reliability for electronic packages
• BMBF Nanet: Network of competence for nanotechnologies in sensor systems

Selected Publications:

Chairs of the Center for Microtechnologies

• Characterization of cracks in materials and interfaces by means of fracture-mechanical methods considering also process influences on the materials

Simulation:

• Calculation of failure parameters as a function of external loading conditions
• Multi-physics approaches to couple e.g. thermal, mechanical and fluidic fields (Finite Element simulations, Computational Fluid Dynamics) for system simulation
• Multi-scale approaches (e.g. Molecular Dynamics simulation) to obtain structure-property correlations between the nano-scale and the continuum

Experimental analytics:

• Modern non-contact deformation analysis to verify simulation results on various length scales, in this vein degradation and cracks can be observed in-situ in the micro and nano domain (e.g. nm-resolution by microDAC in combination with REM, AFM or FIB)
• Mechanical testing, reliability testing and crack tracing (e.g. by pulse IR thermography) on specimens of small geometry under combined loading conditions

Prof. Wunderle is a member of the European Centre for Micro and Nano Reliability (EUCEMAN) and participates in a joint initiative with Fraunhofer ENAS and industrial partners to establish a keylab for microreliability in Chemnitz.
Honorary Professor for Nanoelectronics Technologies

Synergies with micro and nanosystems technology arise from materials also usable for sensoric functions (e.g. CNTs) and thin film deposition for device fabrication (e.g. metallization, ALD films).

Selected publications:

Main working fields:

• Process development for advanced-on-chip interconnect systems
• Atomic layer deposition of metal and metal oxide films
• Development of high stress thin films for carrier mobility enhancement in MOS transistors
• Simulation and modeling of stress fields in MOS transistor structures and impact on transistor performance
• Carbon nanotubes (CNTs) for interconnect application: deposition, characterization and integration
• Metallization processes for integration of electronic and micro/nanosystem components

Contact: Prof. Dr. Stefan E. Schulz
Phone: +49 (0)371 45001-232
Email: stefan.schulz@enas.fraunhofer.de

Honorary Professor for Optoelectronic Systems

Selected publications:

Main technology fields:

• Development of micro opto electromechnical systems MOEMS
• Development of polymer based functional polymers, nano composites technologies and components for sensors and actuators
• Development of polymer based micro fluidic systems for different Lab-on-Chip systems
• Prototype service of components and systems

Exemplary for the activities in the field of microoptics is the development and validation of infrared MEMS spectrometers. Such a miniaturized spectrometer has been developed together with the Company Colour Control Farbmesstechnik GmbH Chemnitz. The systems can be configured for different wavelength bands and hence used in various applications. To the fields of application of this spectrometer belong, for example, food studies, environmental monitoring, medical diagnostics, metrology or the physical forensic analysis.

Nanocomposite materials offer certain advantages over classical inorganic materials such as easy processing and nearly unlimited design of components. Additionally typical included nanoeffects (e.g. quantum confinement) enhance the system performance substantially or provide completely new functionalities. But a big challenge is to bring nanoparticles, nanorods or nanowires in contact to the micro and macro world. To overcome these difficulties we favour different approaches such as use of special conditioned composites (interfaces, orientation of inclusions) or self-assembling technologies.

In current projects humidity and magnetic positioning sensors are being developed by means of nanocomposites. First results look very promising and it seems that the big advantage of composites, namely the separate conditioning of inorganic (nano) inclusions and the organic matrix, lead to cost efficient sensitive sensors with simultaneously high reliability and sensor lifetime.

For all microsystems appropriate electronics for data processing and control, respectively, is developed and manufactured. Thereby the key features of the electronics are, among others, noise reduction and energy efficiency.

Selected publications:

Contact: Prof. Dr. Thomas Otto
Phone: +49 (0)371 45001-231
Email: thomas.otto@enas.fraunhofer.de
Equipment and Service Offers

The ZfM facilities include 1000 m² of clean rooms (300 m² of them class ISO4). Modern equipments were installed for processing of 4", 6" and 8" wafers as well as design and testing laboratories providing the basis for the following processes:

Design
- MEMS/NEMS
- IC, ASICs and FPGAs
 - low power and low noise, analogue-mixed signal integrated circuits
 - integrated high-voltage circuits
- Design support
- Optimization by means of novel approaches, methodologies and dedicated design tools
- Design for reliability

Modelling and Simulation
- Equipment and processes for micro and nano-electronics
- Physical domains and their interaction
- Thermal simulation
- Electronic devices
- Defects and their influence

Mask Fabrication
- 3" - 7" mask size
- Electron beam lithography
- Proximity and contact double-side lithography

Processes
- High temperature processes: Diffusion / thermal oxidation / annealing / RTP
- Physical Vapor Deposition PVD
 - Sputtering
 - Electron beam evaporation
- Chemical Vapor Deposition CVD
 - Plasma enhanced CVD (PE-CVD)
 - Low-Pressure CVD (LP-CVD)
- Metall-Organic CVD (MOCVD)
- Electroplating: Cu, Ni, Au
- Etching (dry: Plasma- and RIE-mode & wet: isotropic / anisotropic)
 - Dry etching (Si, SiO₂, Si₃N₄, Polysilicon, Silicides, Al, refr. metals, TiN, Cr, DLC, low k dielectrics)
 - Wet etching (SiO₂, Si₃N₄, Si, Polysilicon, Al, Cr, Au, Pt, Cu, Ti, W)
- Wafer lithography / Electron beam lithography
- Chemical Mechanical Polishing CMP (Copper, Silicon, SiO₂)

Characterization and Test
- MEMS/NEMS
- Nanoelectronic devices
- Parametric testing: Waferprober, HP Testsystem
- Characterization of analogue-mixed signal circuits up to 500 MHz

Characterization and modeling of devices from low-voltage and high-voltage micro technologies

Analytics
- Scanning electron microscopy SEM / EDX
- Atomic force microscopy AFM
- Variable angle spectroscopic ellipsometry
- Laser profilometry (UBM, TENCOR FLX-2900)
- Surface profilometer
- US-Microscope
- Tension/Compression testing machine Zwick 4660 universal
- Perkin-Elmer DMA 7e dynamic mechanical analyser
- Micro-mechanical testing instrument
- Lifetime scanner

Fig. 1: View into the new clean room facilities, equipment for depositing foto resist

Fig. 2: P5000 used for deposition of Copper

Fig. 3: Wafer inspection at the microscope
Department Layer Deposition

Contact: Dr. Christian Kaufmann
Phone: +49 (0) 371 531-35096
Email: christian.kaufmann@zfm.tu-chemnitz.de

The department “Layer deposition” is highly competent in the development and fabrication of conductive and isolating layers and layer stacks for micro- and microsystems technologies. For this purpose, the department provides state-of-the-art equipment including a new clean room. The department offers support for advanced process modules for research and development purposes and small volume prototyping. Process modules available include:

- **Physical Vapor Deposition (sputtering, electron-beam):**
 - Vertical sputtering system MRC 643 (materials: Ti, TiN, Ta, TaN, Cu)
 - Vertical sputtering system MRC 643 (materials: Al, Al-Alloys, Cr, TiW, W)
 - R&D sputtering system FHR MS 150 x 4 (materials: Ag, Al, Au, Co, Cr, MoNi, MoFe, Ti, TiN)
 - R&D sputtering system FHR MS 150 x 4–AE-B (materials: Al, Al-Alloys, Hi, Pyrex)
 - R&D Electron-Beam-Evaporation (materials: Al, Cu, Pd, Pt ...)

- **Chemical Vapor Deposition (MO-CVD, PE-CVD, LP-CVD):**
 - MO-CVD R&D system Varian Gartek (materials: Cu, TiN)
 - PE-CVD system Precision 5000 Mark II Applied Materials (materials: SiO₂, Si₃N₄, Si₃O₂N₄, SiCOH, SiCH)
 - PE-CVD system Plasmalab Plasma Technology (materials: SiO₂, Si₃N₄)
 - PE-CVD system Microsys 400 Roth & Rau (material: Diamond-like Carbon)
 - LP-CVD system LP-Thermtech (materials: SiO₂, Si₃N₄, polysilicon)

- **High temperature processes (diffusion / thermal oxidation / annealing / RTP):**
 - For the characterization of the deposited layers and layer stacks we use a lot of measuring methods and systems, for example:
 - KLA Tencor surface profiler Alpha step 500
 - Thin film stress measurement system TEN-COR FLX 2900
 - White light interferometer Nanometrics NanoSpec / AFC
 - Ellipsometer: Gaertner L11B (632.8 nm)
 - Spectroscopic Ellipsometry: Sentech instruments GmbH SE 850 (190 nm – 2550 nm).
Lectures

Chair Microtechnology
Process and Equipment Simulation
Lecturers: Prof. Dr. T. Gessner, Dr. R. Streiter
Advanced Integrated Circuit Technology
Lecturers: Prof. Dr. S. E. Schulz, Dr. R. Streiter
Microelectronics Technology
Lecturers: Prof. Dr. T. Gessner, Prof. Dr. S. E. Schulz
Micro Technology
Lecturers: Prof. Dr. T. Gessner, Dr. K. Hiller, Dr. A. Bertz
Microoptical systems
Lecturer: Prof. Dr. T. Otto
Technology of Micro and Nanosystems
Lecturers: Prof. Dr. T. Gessner, Dr. K. Hiller
Micro and Nano Technology
Lecturers: Prof. Dr. T. Gessner, Dr. K. Hiller
Lectures of International Research Training Group
Lecturer: Prof. Dr. S. E. Schulz

Chair Microsystems and Precision Engineering
Micro Systems and Devices
Lecturer: Prof. Dr. J. Mehner
Precision Engineering
Lecturer: Prof. Dr. J. Mehner
Microsystems Design
Lecturers: Prof. Dr. J. Mehner, M. Dienel
Reliability and Quality Assurance
Lecturer: Prof. Dr. W. Dötzel
Measurement Technologies for MEMS
Lecturers: Dr. J. Markert, Dr. S. Kurth
Technical Optics
Lecturers: Prof. Dr. J. Mehner, H. Specht

Chair Circuit and System Design
Integrated Circuit Design
Lecturer: Prof. Dr. U. Heinkel
System Design
Lecturer: Prof. Dr. U. Heinkel
EDA-Tools
Lecturer: Prof. Dr. U. Heinkel
Rapid Prototyping
Lecturer: Prof. Dr. U. Heinkel
ASIC Design
Lecturer: Prof. Dr. U. Heinkel
Components and Architectures
Lecturer: Prof. Dr. G. Herrmann

Chair Computer Aided Design
Computer Aided Design
Lecturer: Prof. Dr. J. Mehner
Microsystems for Medical Applications
Lecturer: A. Mueller (Klinikum Chemnitz)

Chair Electronic Devices of Micro and Nano Technique
Electronic Devices and Circuits
Lecturer: Prof. Dr. J. Horstmann
Electronic Devices
Lecturer: Prof. Dr. J. Horstmann
Fundamentals, Analysis and Design of Integrated Circuits
Lecturer: Dr. S. Heinz
Integrated Analog Circuit Design
Lecturer: Dr. S. Heinz

Chair Power Electronics and Electromagnetic Compatibility
Power Electronics
Lecturer: Prof. Dr. J. Lutz
Semiconductor Power Devices
Lecturer: Prof. Dr. J. Lutz

Chair for Measurement and Sensor Technology
Electric Measurement Technology
Lecturers: Prof. Dr. O. Kanoun, Prof. Dr. N. Kroemer
Electronic Measurement Technology
Lecturer: Prof. Dr. O. Kanoun
Smart Sensor Systems
Lecturer: Prof. Dr. O. Kanoun
Sensor Signal Processing
Lecturer: Prof. Dr. O. Kanoun
Sensors and Actuators
Lecturer: Prof. Dr. O. Kanoun
Automotive Sensors
Lecturer: Prof. Dr. O. Kanoun
Praxis Seminar Measurement and Sensor Technology
Lecturer: Prof. Dr. O. Kanoun
Fundamentals of Technical Optics
Lecturer: Dr. M. Arnold
Optoelectronic
Lecturer: Dr. M. Arnold
Photonics
Lecturer: Dr. M. Arnold

Chair Microtechnologies
Process and Equipment Simulation
Lecturers: Prof. Dr. T. Gessner, Dr. R. Streiter
Advanced Integrated Circuit Technology
Lecturers: Prof. Dr. S. E. Schulz, Dr. R. Streiter
Microelectronics Technology
Lecturers: Prof. Dr. T. Gessner, Prof. Dr. S. E. Schulz
Micro Technology
Lecturers: Prof. Dr. T. Gessner, Dr. K. Hiller, Dr. A. Bertz
Microoptical systems
Lecturer: Prof. Dr. T. Otto
Technology of Micro and Nanosystems
Lecturers: Prof. Dr. T. Gessner, Dr. K. Hiller
Micro and Nano Technology
Lecturers: Prof. Dr. T. Gessner, Dr. K. Hiller
Lectures of International Research Training Group
Lecturer: Prof. Dr. S. E. Schulz

Chair Microsystems and Precision Engineering
Micro Systems and Devices
Lecturer: Prof. Dr. J. Mehner
Precision Engineering
Lecturer: Prof. Dr. J. Mehner
Microsystems Design
Lecturers: Prof. Dr. J. Mehner, M. Dienel
Reliability and Quality Assurance
Lecturer: Prof. Dr. W. Dötzel
Measurement Technologies for MEMS
Lecturers: Dr. J. Markert, Dr. S. Kurth
Technical Optics
Lecturers: Prof. Dr. J. Mehner, H. Specht

Chair Computer Aided Design
Computer Aided Design
Lecturer: Prof. Dr. J. Mehner
Microsystems for Medical Applications
Lecturer: A. Mueller (Klinikum Chemnitz)

Chair Electronic Devices of Micro and Nano Technique
Electronic Devices and Circuits
Lecturer: Prof. Dr. J. Horstmann
Electronic Devices
Lecturer: Prof. Dr. J. Horstmann
Fundamentals, Analysis and Design of Integrated Circuits
Lecturer: Dr. S. Heinz
Integrated Analog Circuit Design
Lecturer: Dr. S. Heinz

Chair Power Electronics and Electromagnetic Compatibility
Power Electronics
Lecturer: Prof. Dr. J. Lutz
Semiconductor Power Devices
Lecturer: Prof. Dr. J. Lutz

Chair for Measurement and Sensor Technology
Electric Measurement Technology
Lecturers: Prof. Dr. O. Kanoun, Prof. Dr. N. Kroemer
Electronic Measurement Technology
Lecturer: Prof. Dr. O. Kanoun
Smart Sensor Systems
Lecturer: Prof. Dr. O. Kanoun
Sensor Signal Processing
Lecturer: Prof. Dr. O. Kanoun
Sensors and Actuators
Lecturer: Prof. Dr. O. Kanoun
Automotive Sensors
Lecturer: Prof. Dr. O. Kanoun
Praxis Seminar Measurement and Sensor Technology
Lecturer: Prof. Dr. O. Kanoun
Fundamentals of Technical Optics
Lecturer: Dr. M. Arnold
Optoelectronic
Lecturer: Dr. M. Arnold
Photonics
Lecturer: Dr. M. Arnold

Chair Microtechnology
Process and Equipment Simulation
Lecturers: Prof. Dr. T. Gessner, Dr. R. Streiter
Advanced Integrated Circuit Technology
Lecturers: Prof. Dr. S. E. Schulz, Dr. R. Streiter
Microelectronics Technology
Lecturers: Prof. Dr. T. Gessner, Prof. Dr. S. E. Schulz
Micro Technology
Lecturers: Prof. Dr. T. Gessner, Dr. K. Hiller, Dr. A. Bertz
Microoptical systems
Lecturer: Prof. Dr. T. Otto
Technology of Micro and Nanosystems
Lecturers: Prof. Dr. T. Gessner, Dr. K. Hiller
Micro and Nano Technology
Lecturers: Prof. Dr. T. Gessner, Dr. K. Hiller
Lectures of International Research Training Group
Lecturer: Prof. Dr. S. E. Schulz
Since 1998 a strong cooperation exists between the Center for Microtechnologies ZfM and the Fraunhofer Research Institution for Electronic Nano Systems ENAS developed out of the former Chemnitz branch of Fraunhofer IZM. The Fraunhofer ENAS focuses on smart systems integration by using micro and nano technologies. The integration of nano materials as well as printed functionalities causes new challenges and requires new approaches in terms of reliability, testability, design and security.

In near future systems will be quite more intelligent and multifunctional. For that reason the integration of electronics for signal and information processing with sensors and actuators in silicon and non-silicon technologies is a main task. The main research activities of the Fraunhofer ENAS Chemnitz can be divided in the following topics:

- **Multi Device Integration**: development of MEMS/NEMS, prototyping of sensor and actuator devices, integration of such devices together with micro and nano-electronic components to systems, design of components and systems, development and implementation of test and characterization of MEMS/NEMS

- **System Packaging**: core competence in development and application of wafer bonding processes for MEMS packaging (chip and wafer bonding including combinations of new materials and bonding at low temperatures), 3D-patterning technologies for silicon and non silicon materials, CMP (chemical mechanical polishing)

- **Back-end of Line (BEOL)**: advanced metallization systems for the leading edge technology, 3D-integration and interconnects, new materials (copper, low k materials, CNTs...) for advanced metallization, simulation of process and equipment

- **Reliability of Micro and Nanosystems**: thermo-mechanical reliability of micro and nano components in high tech systems, core competence combination of thermo-mechanical simulation with advanced experimental methods

- **Printed Functionalities**: utilizing inkjet and mass printing technologies for efficient industrial fabrication processes of printed components for smart systems, technology development and adapted measurement technique

The department managers of the department Multi Device Integration and Back-end of Line work as honorary professors at the Chemnitz University of Technology.

Both, Fraunhofer ENAS and ZfM, belong to the Smart Systems Campus Chemnitz, which has been finalized within 2009. The Smart Systems Campus Chemnitz is an innovative network with expertise in micro and nano technologies as well as in smart systems integration. This technology park provides renowned scientific and technical centers with the entrepreneurial spirit and business acumen and an economic boost at a location where everything is on the spot. A close integration of science, applied research and industry is there an everyday reality and reflects a strategy that is being fulfilled.

The start-up building for companies related to the sector mentioned before forms an important part of the campus. There is space for approx. 15 start-up companies. In the present time the following companies are working there:

- Berliner Nanotest and Design GmbH (common labs with EUCEMAN, CWM, AMIC GmbH, Amitronics GmbH, SEDEMAT GmbH, Clean Technologies Campus GmbH)
- memslab (common lab with Leibniz IFW)
- EDC Electronic Design Chemnitz GmbH
- LSE Lightweigh Structures Engineering GmbH
- SiMetrics GmbH

The business park allows expanding companies to set up in business in the very neighbourhood. The first company in the park is the 3D-Micromac AG which develops and manufactures highly efficient and innovative machines for laser micro machining.

Fig. 1: Bird view of the Smart Systems Campus Chemnitz with Fraunhofer ENAS (left side), Institute of Physics and new clean room of Center for Microtechnologies (in the middle), old yellow building of Center for Microtechnologies (right), orange building of 3D-Micromac AG (left side, upper part) and start-up building (right to Fraunhofer ENAS)
Cooperation within Center of Competences

The research consortium nanett „nano system integration network of excellence for energy-efficient sensor systems“ is one of the successful initiatives of the second phase of the " Spitzenforschung und Innovation in den Neuen Ländern " program, funded by the Federal Ministry of Education and Research (BMBF). Under the direction of the Chemnitz University of Technology and the Fraunhofer Research Institution for Electronic Nano Systems ENAS this dynamic network of nine different partners was formed to bring together their competences in the field of applied nano technologies. Using that approach of combining the capabilities of several renowned scientific institutions enables international and domestic top level research on a competitive basis. The grant of the BMBF for the whole R&D joint venture amounts to 14 million Euros. The project started November 2009 at a duration of 5 years.

The greatest concern of the network is to be an attractive, competent and solid partner of the industry in the promising domain of nano and system integration technologies. To suit the requirements of high interdisciplinarity and due to huge invest costs for production and test equipment in the field of micro and nano technologies the usage of synergies by collaboration of different oriented research centers is essential for success and efficiency of joint research projects.

The following partners are cooperating within the nanosystem integration network of excellence:

- the University of Applied Sciences Mittweida (FH)
- three Fraunhofer Institutes (Fraunhofer ENAS, Fraunhofer IZM and Fraunhofer IAP)
- three Institutes of the Leibniz Association (Leibniz IHP, Leibniz IFW and Leibniz IPF)
- the Helmholtz Zentrum Berlin (HZB)

Fields of research are:

Novel processes and technologies
- Application of quantum mechanical phenomena and effects of nano structures
- Significant improvement of resolution

Micro-nano integration
- Integration of nano structures with electromechanical functionalities
- "Enabling technology" for implementation of new functionalities

Nano materials
- Functional nano composite materials
- Integration of sensor technologies and actuator
- Engineering into constructional elements

Objectives:

The most important objectives of the network are:

- Increase of the international visibility of the involved partners, especially of scientific and technical centers located at the Smart Systems Campus in Chemnitz by focusing of competences and integration of excellent scientists in promising application-oriented projects
- Combination of different research areas in common projects to suit the interdisciplinary requirements of nano system integration technology
- Link of universities, applied research centers and local industry at a supra-regional level to enable know-how and technology transfer as well as to improve its innovative energy
- Increase of added value of local small and medium-sized enterprises and therefore its competitiveness by implementation of smart components and systems into products
- Strength of attractiveness of R&D institutions for students and graduates by offering collaborations within ambitious and industry relevant research fields

For more information please visit our website: http://www.nanett.org/
Cooperation within the IRTG 1215 Materials and Concepts for Advanced Metallization

Since April 1st, 2006, the International Research Training Group (Internationales Graduiertenkolleg 1215) “Materials and Concepts for Advanced Interconnects”, jointly sponsored by the German Research Foundation (DFG) and the Chinese Ministry of Education, has been established for 4.5 years between the following institutions:

- Chemnitz University of Technology with Institute of Physics, Institute of Chemistry and Center for Microtechnologies
- Fraunhofer Research Institute for Electronic Nano Systems ENAS
- Fraunhofer Institute for Reliability and Microintegration IZM
- Technical University Berlin
- Fudan University, Shanghai
- Shanghai Jiao Tong University

This International Research Training Group IRTG 1215 is the first of its kind at Chemnitz University of Technology. It is lead by Prof. Ran Liu of Fudan University as the coordinator on the Chinese side and Prof. Thomas Gesner on the German side. A graduate school like this offers brilliant young PhD students the unique opportunity to complete their PhD work within 2.5 to 3 years in a multidisciplinary environment. Up to 14 PhD students of the German and 20 of the Chinese partner institutions as well as a post-doctoral researcher at the Center for Microtechnologies are involved in the current program. The different individual backgrounds of the project partners bring together electrical and microelectronics engineers, materials scientists, physicists, and chemists. In particular, the IRTG is working to develop novel materials and processes as well as new concepts for connecting the devices within integrated microelectronic circuits. Smaller contributions are being made in the field of device packaging and silicides for device fabrication. In this sense, the IRTG project is helping to solve problems currently encountered on the way to nanoelectronics.

Therefore, the research program of the IRTG concentrates on both applied and fundamental aspects, and treats the mid- and long-term issues of microelectronics metallization. Atomic layer deposition (ALD) of metals, new precursors for metal-organic chemical vapor deposition (MOCVD), ultra low-k dielectrics and their mechanical and optical characterization together with inspection techniques on the nanoscale are considered. New and innovative concepts for future microelectronics such as carbon nanotube interconnects or molecular electronics along with siliconics to form links to front-end of line processes are of interest, as well as the evaluation of manufacturing-worthy advanced materials. Moreover, the research program addresses reliability and packaging issues of micro devices. Highlighting links between fundamental materials properties, their characteristics on the nanoscale, technological aspects of materials and their applications to microelectronic devices is the main objective of the program.

Nevertheless, the principal idea of the IRTG is four-fold: The research program defines the framework of the activities and the topics of the PhD theses. This is accompanied by a specially tailored study program including lectures, seminars and laboratory courses to provide comprehensive special knowledge in the field of the IRTG. The third part of the program comprises annual summer schools held either in China or Germany, bringing together all participants of the IRTG and leading to vivid discussions during the presentation of the research results. Moreover, an exchange period of 3 to 6 months for every PhD student at one of the foreign partner institutions is another essential component. Besides special knowledge in the scientific field, these activities will provide intercultural competencies that cannot easily be gained otherwise.

Summer School 2009:

The 4th summer school of the International Research Training Group 1215 was held from May the 12th to the 17th, 2009 in Shanghai. This event was organized by Prof. Chen Di of the Shanghai Jiao Tong University.

At the first two days of the summer school (May 13th and 14th), 26 PhD students from the German and Chinese party presented the status and progress of their work. For some of the presenters it was their first attendance to the annual summer school. Each presentation closed-up by questions from the audience. The international participants had the opportunity for further discussions as well as small talk during breaks for tea and meals.

The events were organized at both, the old and new campus of the Shanghai Jiao Tong University. The guests had an impressive visit of the very large new campus.

On May 15th, the preparation of the new proposal for the International Research Training Group took the center stage of the involved professors. The event was opened by Prof. Thomas Gesner, speaker of the International Research Training Group. He demonstrated the activities of the Fraunhofer Research Institution for Electronic Nano Systems ENAS and the Center for Microtechnologies in connection with actual trends and processes in micro and nanotechnologies. Afterwards, the representatives of the single subprojects presented the focuses of prospective activities. Nine German and 11 Chinese subprojects for the follow-up application were already defined in advance. During the meeting, contents were discussed and possible interfaces as well as cooperations between the projects were pointed out.

A sight-seeing-tour for the PhD students was planned. They visited the Suzhou Industrial Park, the Bio Bay, the Suzhou Institute of Nano-Tech and Nano-Bionics (SNANO) and gained insight of the activities of the respective institution. Following, as part of the cultural framework program, the Humble Administrator’s Garden (Zhuozheng Yuan) and the The Tiger Hill (Hu Qiu) were visited.

On May 16th, all participants of the summer school could enjoy an impressive performance of Chinese acrobatics in the arts center Shanghai Circus World.

Due to earlier exchanges (mobility periods) of several PhD students between the Chinese and the German side, the event was accompanied by an active communication of all members. Especially the cultural framework program in a nice atmosphere made the communication between the participants of the summer school really pleasant.

On May 17th the event was completed by the dinner for the German guests and Chinese organizers. According to the attendants, the organization of this year’s summer school was excellent.

For three German PhD students the summer school took place during their three-month exchange stay abroad in China. They were integrated very well in their respective groups and discovered good working conditions.

New proposal:

Beside the research activities of the IRTG program the preparation of the new project proposal was the main focus of the work in 2009. The new topic will be “Materials and Concepts for Advanced Interconnects and Nanostuctures”. The new topic combines both, “More Moore” as well as “More than Moore” related activities. The proposal was submitted to the German Research Foundation (DFG) at the end of October 2009. The evaluation of the first period of the IRTG program by the German Research Foundation is scheduled for the end of March 2010.

For further information please visit our webpage: http://www.zfm.tu-chemnitz.de/irtg/
Networks

Networking is our formula for success. The Center for Microtechnologies is working in several national and international networks.

Silicon Saxony

Silicon Saxony e.V. is Europe’s largest trade association for the microelectronic industry.

It was founded in 2000 as a network for the semiconductor, electronic and micro system industry. The association connects manufacturers, suppliers, service providers, colleges, research institutes and public institutions in the economic location of Saxony. The current number of members has risen to 270. The member companies employ about 35,000 people and the total turnover of the companies is 4 billion € per year. The ZfM belongs to the foundation members.

13 working groups are working within the network. The working group “Smart Integrated Systems” has been founded 2007. It is leaded by Prof. Thomas Gessner.

In 2009 Prof. Thomas Gessner became a member of Silicon Saxony Board.

IVAM

As international association of companies and institutes in the field of micro technology, nano technology and advanced materials, IVAM’s priorities are to create competitive advantages for our members. Nearly 300 member companies and institutes from 20 countries open up new markets and set standards with the support of IVAM. Companies, institutes, products, services and contact persons are listed here online as well as in the printed IVAM directory. The Center for Microtechnologies is a member of the IVAM network since 2005.

Within 2007 Prof. Gessner became a member of IVAM Advisory Council. The IVAM Advisory Council helps impulses from application oriented science to be integrated into the work of the association. Apart from their consulting function, the members of the IVAM Advisory Council also represent IVAM in public.

Nanotechnology Center of Competence “Ultrathin Functional Films”

The Center of Competence “Ultrathin Functional Films” (CC-UFF) is coordinated by Fraunhofer IWS Dresden. It joins 51 enterprises, 10 university institutes, 22 research institutes, and 5 corporations into a common network. Activities within the frame of Nano-CC-UFF are subdivided into 6 working groups, each of them is administered and coordinated by one member.

• WG 1: Advanced CMOS
• WG 2: Novel components
• WG 3: Biomolecular films for medical and technological purposes
• WG 4: Mechanical and protective film applications
• WG 5: Ultrathin films for optics and photonics
• WG 6: Nano-size actuators and sensors

Working group 1 is headed by Prof. Thomas Gessner and working group 2 by Prof. Christian Radehaus (former member of the board of directors of the Center for Microtechnologies of Chemnitz University of Technology).
Contact:
Prof. Dr. Dr. Prof. h.c. mult.
Thomas Gessner
President of Center for Microtechnologies

Chemnitz University of Technology
Faculty of Electrical Engineering and
Information Technology
Center for Microtechnologies
Reichenhainer Strasse 70
09126 Chemnitz
Germany

Phone: +49 (0)371 531-24060
Fax: +49 (0)371 531-24069

Email: info@zfm.tu-chemnitz.de
http://www.zfm.tu-chemnitz.de/