From sampling to ramping:

Technology and Business Model Challenges for a MEMS Foundry to Address WLP Applications
Yole 2017 “The MEMS and Sensor market is growing and new applications are arriving. However, MEMS companies and MEMS foundries are struggling to grow”

“Everything looks good - so where is the problem”

Voice from trenches: “MEMS high volume manufacturing is super complex”
About X-FAB

Legend:
WSPM = Wafer Starts Per Month
X-FAB MEMS Foundry

Overview

› High-volume MEMS production operation embedded in CMOS environment
› 200 mm & 150 mm MEMS operations in 4 clean rooms
› Wide range of processes and materials – CMOS and non-CMOS compatible
› MEMS & CMOS integration
› Automotive quality system

Application examples

› Automotive
 • Pressure sensors, Inertial sensors
› Medical / µFludic
 • DNA sequencing, Drug & allergy screening
› Mobile Communication
 • Microphones
› Industrial
 • Gas Sensor
90% of MEMS projects at X-FAB are addressing customer specific technology solutions
- Typically 3-5 RFQ’s per month from all regions
- 30+ ongoing development programs
- Concurrent dev’t of process and product
- 30%+ of all programs don’t succeed in getting to SOP

10% of new MEMS projects are using X-FAB MEMS open platform technologies
- Readily qualified technologies,
- DR, Specs, PDKs
- Pressure Sensor
- Inertial Sensor
MEMS Foundry Challenge

Fragmented and diverse MEMS market
- One Product
- One Process
- One Package
- One Calibration

Small CUSP Business cases
- Opportunity risks
- Large CAPEX
- Utilizing existing tools at and beyond the tool limits
- Concurrent design and technology development
- Diverse technologies
- Long learning cycles

strategic vectors for X-FAB
- Business
- Customer
- Technology
- Tools
- Experience
- Methodology
Foundry vs. customer selection

- Business case
 - Markets and applications fit
 - Volume, GM, CAPEX
 - Regional fit
 - Experience, expectations, time to market, sampling requirements, NRE
 - Customer relationships

Engineering resources

- Development in mfg. environment vs. development in research lab
- Resource limitation – there was, there is and never will be free engineering bandwidth
- Design to cost vs. cost of design depending on market and application

Process complexity

- Portfolio balancing: e.g. 1 layer vs. 3 wafer stack with 18 layers (MEMS w/o CMOS)
Methodology

- No differences compared with CMOS development methodology
 - FMEA’s, PCM concept, patent research, early phase reliability investigations, ...
 - Alignment with customer on development methodology
 - Frozen process spec vs. fluid spec due to concurrent process and device development
 - Sample production in non-frozen process

- Program management
 - Management of CMOS / MEMS interface
 - Supply chain optimization & management

- Problem solving methodology
 - Fishbone, 8D, 5Why, specific FA
 - Lessons learned
Technology

- Concurrent tool, process, design and packaging developments
 - Long development cycles
 - Learning cycles through supply chains are very long

- Technical differences MEMS vs. CMOS
 - MEMS control philosophy
 - CMOS equipment used for MEMS processing
 - Additional parameter control needed such as mechanical stress, topology
 - Tool operations at critical conditions – very thick process layer
 - High requirements on tolerance and homogeneities (typical tolerances for layer thickness: 3%-5% MEMS vs. 10% CMOS [analog])
CMOS + MEMS @ X-FAB

CMOS-MEMS integration is an area of focus for X-FAB.

- realization of very complex technologies and advanced customer products allow different ion and customer retention

Opportunity to capture more value in supply chain for foundry

- MEMS silicon value in final product is less compared with IC business

Required technologies

- Wafer bonding
 - Capping sensitive sensor and actuator structures
 - Manufacturing worthy integration concept, up to the assembly and packaging of the final device required

- Through Silicon Vias
 - Manufacturing worthy integration concept, up to the assembly and packaging of the final device, required
CMOS + MEMS WLP technology challenges

› Mechanical, electrical, chemical, physical properties have to be matched with CMOS, MEMS, Package and calibration requirements

› Fully holistic view required from project start onwards

› Examples
 1. TSV: wafer bow compensation
 2. TSV: cross contamination concerns with open passivation
 3. NVM Data retention issues caused by release etch – 100% hermitic seal required
 4. Anodic Bond for TGV: glass electrode wafer
 5. Flat passivation for bond surface preparing
 6. Fluidic optimization of polymer bond system
WLP technology use @ X-FAB

<table>
<thead>
<tr>
<th>WLP</th>
<th>Production</th>
<th>Development</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anodic bonding</td>
<td>Pressure Sensor</td>
<td>Inertial Sensor µFludic</td>
<td>High volume</td>
</tr>
<tr>
<td>Glass frit bonding</td>
<td>Inertial Sensor, Optical Sensor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AlGe</td>
<td></td>
<td>Optical Sensor</td>
<td></td>
</tr>
<tr>
<td>Polymer Bond</td>
<td>µFludics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusion Bond</td>
<td>Pressure Sensor Inertial Sensor</td>
<td></td>
<td>High volume</td>
</tr>
<tr>
<td>TSV</td>
<td></td>
<td>Optical Sensor µFluidic</td>
<td></td>
</tr>
</tbody>
</table>
Vision

- Enable wafer level (sensor) integration and packaging up to direct mounting on PCB
- Overall thickness – 0.6mm – even less is possible
- AlGe or Glass fit Bonding with hermetic sealing
- Grinding of system wafer after bonding – no thin wafer handling needed
- X-FAB TSV process
- Device sidewall passivation (Oxide Cu Polyimide) for all around protection of active structures
- Dicing only through the carrier wafer at end of process
Semiconductor Supply Chain 2020 (Yole view)

- Semiconductor production chain
- PCB and substrate component suppliers
- Equipment and Material suppliers
- Passive components, connectors, PCB accessories

X-FAB?
WLP Modular Process Concept

modular CMOS Process
CMOS MEMS Integration
Functional Surfaces
Wafer bond
TSV
RDL
UBM
Passivation
Bumps
Dicing

Die Size Performance
Die Size Performance
Die size Performance
Die size Performance

Fludic primitive devices
Bio compatible/active surfaces
Harsh environment protection
Solder able surface / system integration

Reduced packaging cost
Hermetic cavities
Reduced packaging cost
Reduced packaging cost

MEMS release and cap wafer
Improved TSV performance & cost
Back side illumination
Neff increase @ stealth dicing

Thin Wafer
Solder Stop
µTP

Reliability
Heterogeneous Integration
Performance
New functions

PCB level integration
Neff increase
Trade Off’s

› Performance
 • Hermitic seal, yield, Bond Strength, Drift, reliability

› Process Integration
 • Wafer bow, release etch, open passivation, pad quality, NVM integration, temperature budget, outgassing, alignment tolerances, wafer thickness, bond frames, noble metal

› Cost
 • Process complexity
 • Capex
 – Tools
 – Metrology, Monitoring
 – Cross contamination
 • Opex
Leverage of high volume mfg. experience:
- Bond pad protection schemes in MEMS processing
 - Dicing over pads
- Outgassing in cavities
- Front side protection vs. edge grip handling capabilities
- ...

Requirements:
- Standard Process Blocks and process module reuse
- Gap development vs. full flow development
Leverage of CMOS high volume manufacturing infrastructure requires managing the risks involved
 - Objective is zero risk for CMOS WIP

Methodology requirements
 • Developing and sustaining of specific mindset
 • Controlled material flow and related logistics
 • Additional in line tests - MEMS and CMOS specific (detailed GOX monitoring)

Tools and infrastructure
 • Separation by clean room, main frame or chamber required
 • Dedicated tools and handling systems (supported by tool automation)
WLP Supply Chain

- Complex supply chains
 - Up to three internal fabs and external processing / or probing

- Issues to manage
 - SOP prior process freeze
 - Quality gates are cost drivers (AVI)
 - ERP system
 - Lead time
 - Yield management
 - Foreign material handling
 - Loading swings by consumer business
Key Messages

- We do not expect MEMS WLP high volume manufacturing to become a commodity in the next years.
- We believe managing the business model risk (large capex, small projects) is key.
- We see specs for tools and process constantly being pushed to the limits and above.
- We experience complex supply chain issues.
- We recognize standardization and process module re-use is key.
Thank you for your attention.