Temporary Wafer Bonding - Key Technology for 3D-MEMS Integration

2016-06-15, Chemnitz

Fraunhofer ENAS
System-Packaging (SP)
Back-End of Line (BEOL)
Outline

- 3D-MEMS integration
 - Motivation and challenge
 - Main processes for 3D-MEMS integration
- Temporary wafer bonding
 - Method (zone bonding process)
 - Device and carrier wafer preparation
 - Adhesive wafer bonding
 - Wafer de-bonding
- Summary and Outlook
3D MEMS Integration

Motivation

- New applications, different functionalities and interaction with environment

→ Demand for Smart Systems

From lateral to vertical integration

- Vertical Integration improves the driving factors: size, cost, speed and power consumption
3D MEMS Integration

Challenge compared to "3DIC"

- Functionalities (optic, mechanic, fluidic + electronic)
- Different technologies, materials and substrates (e.g. silicon, ceramic, glass, metal, polymers)
- Sensible components, hermetical packaging
- TSVs with high aspect ratio and large dimensions
- No Standard solution → depending on the application

MEMS: micromechanics

Principle of integrated MEMS (Sensor + ASIC/Cap)

CMOS based on Image Sensor with HAV TSVs

3DIC

Samsung (16Gbit DRAM)

IBM (TSV in 32nm CMOS)
3D MEMS Integration

Main process steps

Principle

- Combination of different devices (MEMS+ASIC/Cap)
- Creation of miniaturized system

Main processes

- Wafer thinning
 - Form factor/ TSV depth reduction
- Fabrication of through substrate vias (TSVs)
 - TSV etching, isolation and fill with conductive material
- Permanent wafer bonding
 - Realization of mechanical + electrical contact including other functions (e.g. hermiticity, ...)

MEMS wafer

ASIC/Cap wafer

Wafer thinning

TSV fabrication

Permanent wafer bonding

Mounting on PCB
3D MEMS Integration

Main process steps

Permanent bonding

- Bonding without intermediate layer
 - Fusion bonding
 - Anodic bonding
 - Metal/oxide
 - Metal/polymer

- Hybrid bonding
 - Insulating layer
 - Metal layer

- Bonding with intermediate layer

Temporary bonding

- Dry
 - Tape
 - Electrostatic
 - Adhesive

- Wet

Wafer bonding

- Surface activated bonding
 - Glass-frit bonding
 - Adhesive bonding
 - Eutectic bonding
 - SLID bonding
 - Laser bonding
 - TC bonding
 - Reactive bonding

- Thermal
 - Chemical
 - Laser
Temporary wafer bonding - key Technology for 3D-MEMS

Motivation

- 3D integration required wafer thinning
- Thinned wafer: low stability, low bending stiffness and fragile
- Required temporary mechanical wafer support
 → Solution: temporary wafer bonding to fix the device to support wafer
 → Established method in 3D IC

Source: FRT of America LLC

Extreme wafer deflection

Source: ITRI

3D-IC
Temporary wafer bonding - key Technology for 3D-MEMS

Motivation

- Temporary wafer bonding technology important in 3D-IC:

<table>
<thead>
<tr>
<th>Step #1</th>
<th>Step #2</th>
<th>Step #3</th>
<th>Step #4</th>
<th>Step #5</th>
<th>Step #6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Via first</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSV before CMOS</td>
<td>TSV Etch</td>
<td>TSV Fill</td>
<td>FEOL 1st</td>
<td>BEOL 1st</td>
<td>De-Bonding</td>
</tr>
<tr>
<td>Via middle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSV between CMOS and BEOL</td>
<td>FEOL 1st</td>
<td>TSV Etch</td>
<td>TSV Fill</td>
<td>BEOL 2nd</td>
<td>De-Bonding</td>
</tr>
<tr>
<td>Via last</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSV after BEOL</td>
<td>FEOL 2nd</td>
<td>BEOL 2nd</td>
<td>Thinning</td>
<td>TSV Etch</td>
<td>De-Bonding</td>
</tr>
</tbody>
</table>

Source: Yole 2014
3D MEMS Integration

Main process steps

Temporary bonding

- **Permanent bonding**
 - Bonding with intermediates layer
 - Fusion bonding
 - Anodic bonding
 - Metal/oxide
 - Metal/polymer
 - Insulating layer
 - Metal layer
 - Glass-frit bonding
 - Adhesive bonding
 - Eutectic bonding
 - SLID bonding
 - Laser bonding
 - TC bonding
 - Reactive bonding
 - Thermal release
 - Laser release
 - Chemical release

- **Hybrid bonding**
 - Bonding without intermediates layer
 - Surface activated bonding
 - Oxide free bonding

- **Temporary bonding**
 - Dry
 - Tape
 - Electrostatic
 - Adhesive
 - Wet

© Fraunhofer ENAS

Technische Universität Chemnitz

Zentrum für Mikrotechnologien
Temporary wafer bonding - key technology for 3D-MEMS

Methods

Various methods are available with different requirements for thermal, chemical and mechanical stress.

Traditional methods:
- Thermal slide, laser release

Trend:
- Chemical release with room temperature de-bonding (peel-off)
- Two different zones (zone-bonding)

ENAS:
Brewer science ZoneBond® technology with temporary adhesive wafer bonding process
Temporary wafer bonding - key technology for 3D-MEMS

Zone-Bond® technology

Main process steps:

- Preparation device wafer
- Preparation carrier wafer
- Adhesive wafer bonding
- Wafer de-bonding
Temporary wafer bonding - key technology for 3D-MEMS

Zone-Bond® technology

- **Device wafer**
- Spin coating thermoplastic adhesive
- **Cure adhesive**
- **Carrier wafer** with low adhesion zone in the center
- **Flip wafer**
- **Adhesive wafer bonding temperature/ force**

Temporary wafer bonding

- **Carrier wafer cleaning**
- **Device wafer cleaning**
- **Mechanical de-bonding at room temperature**
- **Zone edge cut release**
- **Attach on dicing frame**

Wafer de-bonding

Source: SUSS microtec
Temporary wafer bonding - key technology for 3D-MEMS

Device wafer preparation

- Preparation device wafer (100-200mm) with spin on process using SUSS RCD8 coating system (including hotplate)
- Spin on process with thermoplastic adhesive (ZoneBOND™ 5150), started in wafer center → high viscosity: 10000cp, layer thickness: 15-30µm
- Cure adhesive: 230°C, 2min

Fig.: process flow device wafer preparation
Temporary wafer bonding - key technology for 3D-MEMS

Device wafer preparation

- Layer thickness depends on vacuum chuck rotating speed
 - Thickness 15-30µm required rotating speed of 1000-2000 R/min
- Dispensing quantity: 5-10ml

![Graph: layer thickness in dependence on the rotating speed](image)

Fig.: measured layer thickness (30µm) and homogeneous coated wafer
Temporary wafer bonding - key technology for 3D-MEMS

Carrier wafer preparation

- Preparation carrier wafer (100-200mm) using SUSS RCD8 coating system (including hotplate)
- Dispensing adhesive (ZoneBOND™ EM 2320) on wafer edge
 - Medium viscosity: 400cp, layer thickness: 0.5-3µm
 - Cure adhesive: 220°C, 2min
- Dispensing anti-stick layer (ZoneBOND™ Z1 3500-02) on wafer center
 - Low viscosity: 50cp, layer thickness: 1.5-3nm
Temporary wafer bonding - key technology for 3D-MEMS

Carrier wafer preparation

- Layer thickness depends on vacuum chuck rotating speed and dispensing quantity

→ Layer thickness of 2µm required rotating speed of 300 R/min with dispensing quantity of 1-2ml

- Adhesive edge width: 1.5mm

Fig.: layer thickness in dependence on the dispensing quantity with constant rotating speed 300R/min

Fig.: carrier wafer after coating with adhesive on wafer edge (1-2mm)
Temporary wafer bonding - key technology for 3D-MEMS

Adhesive wafer bonding

- Adhesive wafer bonding of device and carrier wafer
- Equipment: wafer bonding system SB8e (company SUSS MicroTec)
- Process parameter:
 - Temperature: 200°C
 - Time: 2min
 - Bonding force: 170 kN/m²
- Forming of two different zones
 - Fragile adhesive region (zone 1) → wafer center
 - Strong adhesive region (zone 2) → wafer edge

Fig.: Wafer bonding system SB 8e

Fig.: Schematic drawing regarding adhesive wafer bonding in the SB8e
Temporary wafer bonding - key technology for 3D-MEMS
Adhesive wafer bonding

- Characterization adhesive wafer bonding technology
 - Quantitative: IR-Detection
 - Qualitative: Compression shear test
 - Fragile adhesive zone 1:
 Dicing → Yield < 5%
 Bonding strength: 4MPa
 - Strong adhesive zone 2:
 Dicing → Yield > 90%
 Bonding strength: 8MPa

Fig.: IR-Detection after adhesive Wafer bonding w/o defects
Fig.: Shear strength zone 2 (left) and zone 1 (right)
Fig.: Dicing yield zone 1 (left) and zone 2 (right)
Temporary wafer bonding - key technology for 3D-MEMS

Wafer thinning
- Wafer size: 100…200 mm
- Material: Si, glass, ceramic…

Grinding
- Disco DAG 810 semi automate
- Final thickness: < 50 µm

Spin etching
- HF/CH₃COOH/HNO₃ chemistry
- Stress release after grinding
- Surface quality: \(R_a = 4 \) nm

Chemical mechanical polishing
- IPEC and AMAT Mirra tool
- Surface quality: \(R_a < 0.5 \) nm
Temporary wafer bonding - key technology for 3D-MEMS

Additional processes

- DRIE etching
- Metallization
- Photolithography
- Wet etching
- Cleaning processes with acids and bases
- … (Processing temperatures up to 250°C)

<table>
<thead>
<tr>
<th>Solvents</th>
<th>NMP</th>
<th>85°C</th>
<th>60 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>25°C</td>
<td>25 min</td>
<td></td>
</tr>
<tr>
<td>Cyclohexanone</td>
<td>25°C</td>
<td>5 min</td>
<td></td>
</tr>
<tr>
<td>Ethyl Lactate</td>
<td>25°C</td>
<td>30 min</td>
<td></td>
</tr>
<tr>
<td>IPA</td>
<td>25°C</td>
<td>30 min</td>
<td></td>
</tr>
<tr>
<td>PGMEA</td>
<td>25°C</td>
<td>5 min</td>
<td></td>
</tr>
<tr>
<td>PGME</td>
<td>25°C</td>
<td>5 min</td>
<td></td>
</tr>
<tr>
<td>PGME/PGMEA</td>
<td>25°C</td>
<td>5 min</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acids</th>
<th>HF:H₂O (10:1)</th>
<th>RT</th>
<th>15 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>HNO₃:H₃PO₄:HF (12:8:1)</td>
<td>25°C</td>
<td>15 min</td>
<td></td>
</tr>
<tr>
<td>H₂SO₄:HF (20:1)</td>
<td>25°C</td>
<td>5 min</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bases</th>
<th>H₂O₂ (35%)</th>
<th>50°C</th>
<th>60 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>KOH (30%)</td>
<td>85°C</td>
<td>60 min</td>
<td></td>
</tr>
<tr>
<td>2% TMAH (2%)</td>
<td>80°C</td>
<td>30 min</td>
<td></td>
</tr>
</tbody>
</table>
Temporary wafer bonding - key technology for 3D-MEMS

Wafer edge release

- Thinned wafer stack attach to dicing frame
- Chemical release of the zone 2 direct on tape frame (support with ultrasonic)
- Equipment: cleaning system AR12 (SUSS microtec)
 - Wafer size: 100-200mm
 - Time: 10-20min (depended on zone 2 width)
 - Solvent/ swell: mesitylene/limonene
Temporary wafer bonding - key technology for 3D-MEMS

Wafer de-bonding

- Wafer de-bonding carrier- and device wafer
- Room temperature peel-off process
- Initiation with blade
- Carrier wafer release with flexible plate

Equipment: wafer debonder DB12T (SUSS microtec)
- Wafer size: 100-200mm
- Kraft: 100-500N
- Time: 5min

Fig.: schematic drawing to wafer de-bonding

Fig.: wafer de-bonding system DB 12T
Temporary wafer bonding - key technology for 3D-MEMS

Device cleaning and handling

- Cleaning carrier and device wafer
 - Combined puddle dispense- und spray cleaning process
 - Device wafer on dicing frame
 - Carrier wafer single process
- Equipment: AR12 cleaning system (SUSS microtec)
 - Wafer size: 100-200mm
 - Time: 10min
 - Solvent/swell: mesitylene/limonene, IPA
- Thinn wafer handling using electrostatic vacuum chucks

Fig.: AR12 cleaning system (company SUSS microtec)

Fig.: electrostatic vacuum chuck
Fig.: 50µm thinned device wafer
Temporary wafer bonding - key technology for 3D-MEMS

Possible scenario for 3D-MEMS Integration

Device wafer with Via first TSV

Temporary wafer bonding

Wafer thinning

Wafer bonding to MEMS wafer
Temporary wafer bonding - key technology for 3D-MEMS

Summary and Outlook

- Trend: increasing of functionalities in one system and component size reducing → solution: 3D MEMS Integration
- Key technology: temporary wafer bonding
 - High priority in 3D-IC → technology transfer to MEMS devices
 - Complex two-zone approach → Reduction to one zone (new technology called BrewerBond®)

![Temporary Wafer Bonding Diagram]

Source: SUSS microtec
Thank you for your kind attention!

Fraunhofer ENAS
Dept. System Packaging
Dirk Wünsch
Technologie Campus 3
09126 Chemnitz Germany
Telefon: +49 (0)371 45001-262
Fax: +49 (0)371 45001-362
E-Mail: dirk.wuensch@enas.fraunhofer.de
Web: http://www.enas.fraunhofer.de