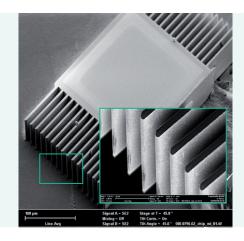
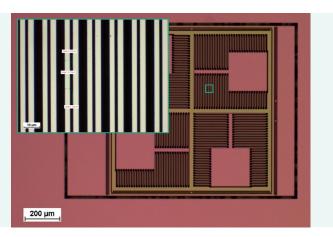
TWO-AXIS ACCELERATION SENSOR FOR MEDICAL APPLICATIONS

The sensing device is a two axis


micromechanical acceleration sensor with


capacitive detection. The MEMS is fabri-

cated using the BDRIE technology. BDRIE

stands for Bonding and Deep Reactive

Ion Etching. The MEMS core die has a

Contact

Fraunhofer Institute for Electronic Nano Systems ENAS Technologie-Campus 3 09126 Chemnitz | Germany

Contact person

Dr. Maik Wiemer Phone: +49 371 45001-233 E-mail: maik.wiemer@enas.fraunhofer.de

Dirk Wünsch Phone: +49 371 45001-262 E-mail: dirk.wuensch@enas.fraunhofer.de

Dr. Roman Forke Phone: +49 371 45001-254 E-mail: roman.forke@enas.fraunhofer.de

Photo acknowledgments: Fraunhofer ENAS All information contained in this datasheet is preliminary and subject to change. Furthermore, the described systems, materials and processes are not commercial products.

dimension of $(1 \times 1) \text{ mm}^2$. The complete die size is $(1.2 \times 1.5) \text{ mm}^2$. Each axis has two differential capacitances to extract the acceleration data. The table below summarizes the target specification for the accelerometer.

Description	Sign	Value	Unit
Measurement range	±	5	g
Natural frequency	~	2	kHz
Number of axis		2	
Number of electrodes per axis		2	
Base capacitance of one electrode	~	2.5	pF
Capacitive sensitivity of one electrode	>	50	fF/g
Spring stiffness (x direction)		3.6	N/m
Spring stiffness (y direction)		5.8	N/m
Typical polarization voltage	<	1.3	Volt
Dimension L x W		1.2 x 1.5	mm
Thickness		645	μm
Mass	~	3	mg