
ATOMIC LAYER DEPOSITION AND TARGETED APPLICATION AREAS

Contact

Fraunhofer Institute for Electronic Nano Systems ENAS

Technologie-Campus 3 09126 Chemnitz | Germany

Contact persons

Prof. Dr. Stefan E. Schulz Phone: +49 371 45001-232 E-mail: stefan.schulz@enas.fraunhofer.de

Dr. Ramona Ecke Phone: +49 371 45001-281 E-mail: ramona.ecke@enas.fraunhofer.de

Figures:

STEM image of ECD Cu fill on a TaN/Ru stack prepared by PVD with Cu seed deposited by ALD. (left); ALD copper oxide integrated with sputtered nickel films. (center); Functionalization of carbon nanotubes by ALD. (right)

Available Equipment

- 100 mm single-wafer tool with
 2 liquid delivery systems and 2 bubblers
- Roth & Rau 200 mm multi-chamber tool with two ALD chambers, each with:
 - 2 Direct Liquid Injection Systems
 - 2 Liquid Delivery Systems

In vacuo XPS and *in situ* Raman spectroscopy available on the system as well as CVD for carbon nanotubes (CNTs) and ion-beam sputter deposition.

ALD Materials and Application Areas

1. Metals

-

- Copper
- Seed layers for metallization of nanoelectronic interconnect systems and troughsilicon vias (TSVs) in 3D integration
- Functionalization of CNTs and CNT integration in metallization systems
- Non-magnetic layer in GMR stacks
 Nickel

ickei

- Liner and seed layer in interconnect systems and for TSV metallisation
- Ferromagnetic film in magnetic/spintronic film systems
- Functionalization and metallization of CNTs

Cobalt

- Seed und liner in interconnect systems and for TSV metallization
- Ferromagnetic layer in magnetic/spintronic film systems

2. Metal Oxides

Copper Oxide

- Intermediate stage for ALD of copper
- Functionalization of CNTs, e.g. for sensors

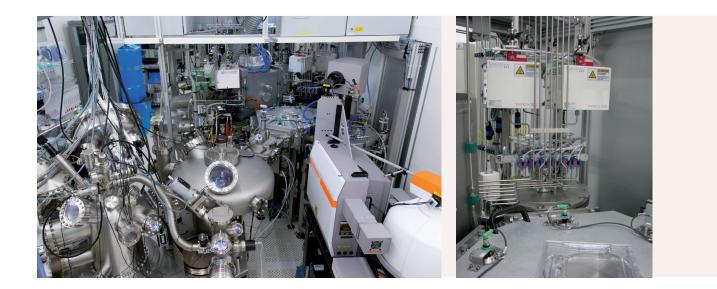
Nickel Oxide

- Intermediate stage for ALD of nickel
- Functional film in magnetic/spintronic film systems
- Functionalization of CNTs, e.g. for sensors

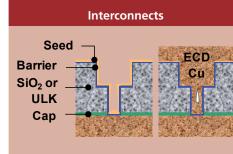
Aluminum Oxide

- Passivation layer, e.g. for MEMS, electronic devices, solar cells
- Dielectric with high permittivity, e.g. for storage/memory applications
- CNT functionalization

3. Metal Nitrides *Titanium Nitride*


Diffusion barriers against copper diffusion in nanoelectronic interconnect systems and TSVs for 3D integration

 Hard coatings/abrasion protection for MEMS



TECHNISCHE UNIVERSITÄT CHEMNITZ

Working Areas

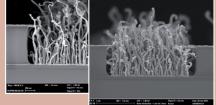
- ALD Cu seed layers for ULSI interconnects
- Development of ALD processes for liner deposition (e. g. Co, Ni)

Spintronics

Antiferromagnet (e. g. NiO) Ferromagnet (e. g. Ni, Co) Non-magnetic conductor (Cu) Ferromagnet (e. g. Ni, Co) Substrate

Typical GMR spin valve layer stack

 ALD utilization for spintronic devices, such as GMR sensor systems


Ni substrate	
	ALD film (5 nm) on Ni
200 nm	
	200 nm

SEM top view images

3D Nanostructures

- Functionalization of 3D nanostructures by ALD coating with conformal layers or nanoparticles, e. g.:
 - CNTs
 - Nanowires
 - Porous materials

Pristine sample

SEM images of vertically aligned MWCNTs in via holes

Figure:

Roth&Rau 200 mm multi-chamber tool for *in vacuo* processing. (left);

ALD modul with direct liquid injection systems (Vapbox 500, Kemstream). (right)

Photo acknowledgments: Fraunhofer ENAS All information contained in this datasheet is preliminary and subject to change. Furthermore, the described systems, materials and processes are not commercial products.