

Ulrike Köhl

04.12.2024

40th Chemnitz Seminar

Fraunhofer Institute for Cell Therapy and Immunology Leipzig (IZI) Institute of Clinical Immunology, University & Univ. Hospital Leipzig (UL/UKL)

Disclosure

In relation to this presentation, I declare that there are no conflicts of interest

• Cooperation:

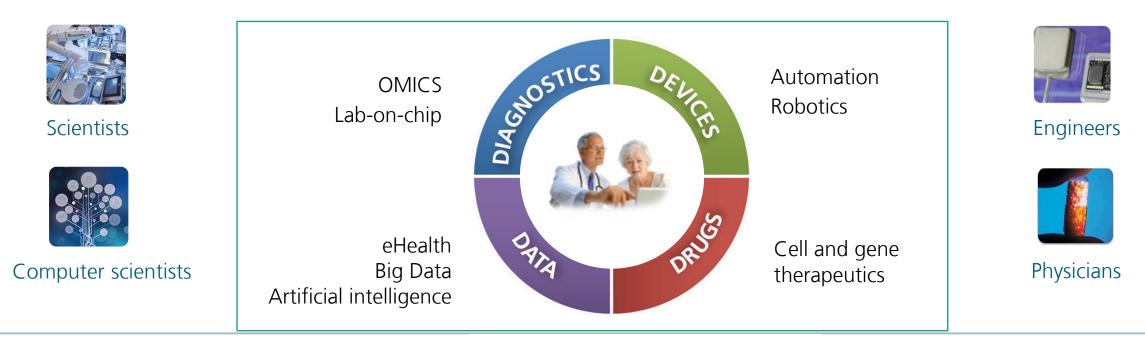
Miltenyi Biotec (CD20-CAR-Time) Novartis (CTL019 European study trial & Kymriah[®]) Bristol-Myers Squibb (CAR T clinical investigational medicinal products) T cell Tolerance

• Consulting:

AstraZeneca, Affimed, ATMPS, Glycostem, Zelluna, NovoNordisk


Health Technology at Fraunhofer

Living Drugs in Cell and Gene Therapy



Mission – Vision – Strategy: "4D Concept"

> 45 Fraunhofer Institutes (>60%) are involved in health research (annual > 450 Mio €)

- Mission Translation & transfer into medical practice
- Vision Cost-intelligent precision medicine for affordable healthcare
- Strategy Transdisciplinary networking of the 4Ds Drugs / Devices / Diagnostics / Data

Fraunhofer "4D Concept"

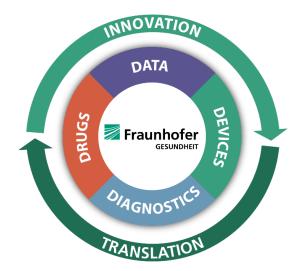
Interdisciplinarity

The 4D of health research

Fraunhofer is the sole research organization capable of uniting all the essential expertise across the 4D spectrum!

Fraunhofer Health Research

Individualized therapy


Interactions between the 4 important areas must be expanded Transdisciplinary research: Drugs, Devices, Diagnostics, Data

Networking at Fh Health

Medical technology

- ✓ Health
- Production
- Innovation research
- Information and communications technologies (ICT)
- ✓ Sensor Technology
- Microelectronics
- Resource technologies and bioeconomy
- Materials
- Light & Surface (L&S)

Clinical research for drugs and medical devices

- Health
- 🗸 ICT
- ✓ L&S
- Microelectronics

Automated pharma production

- ✓ Health
- Production
- Innovation research and ICT
- ✓ Sensor Technology
- Microelectronics
- Resource technologies and bioeconomy
- Materials

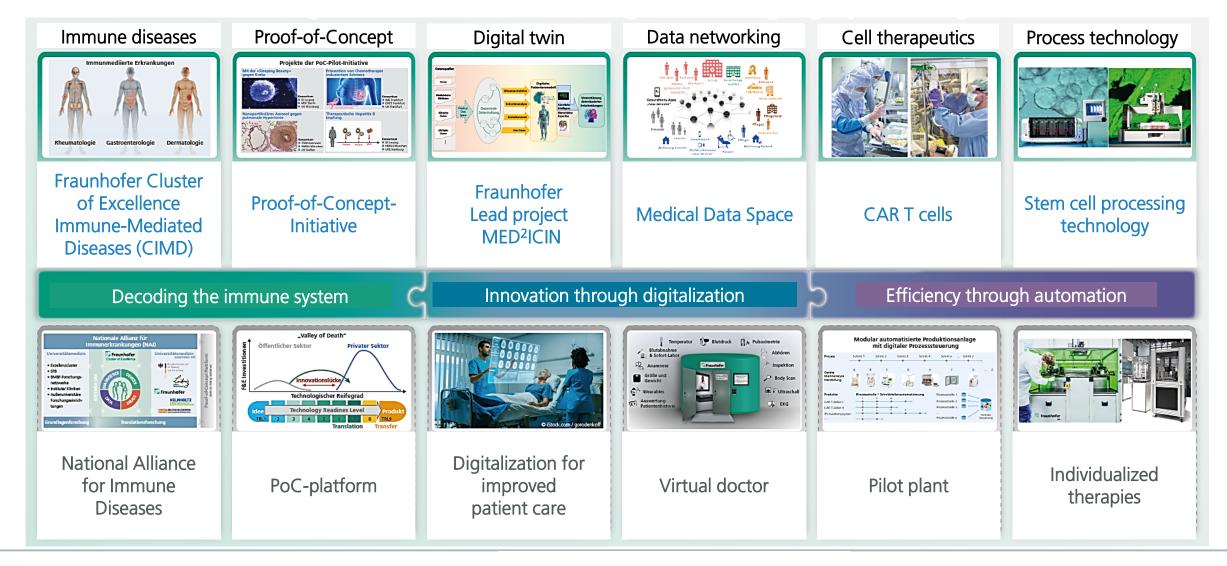
New drug classes /CIMD

- Center for Digital Diagnostics
 - Health
 - 🗸 ICT
 - Partner institutes

Cross-networking of the 4D is an important unique selling point

Fraunhofer Health Technology

Key Facts


SPECTRUM	INDICATIONS	KEY POINTS
PreventionDiagnosticsTherapyCare	 Cancer Autoimmune diseases Common diseases Rare diseases 	 Translational research Regenerative medicine Medical technology Medical informatics

STRENGTHENING RESILIENCE – Key impact for crisis management and innovative health research

Examples of optimizing care to benefit patients

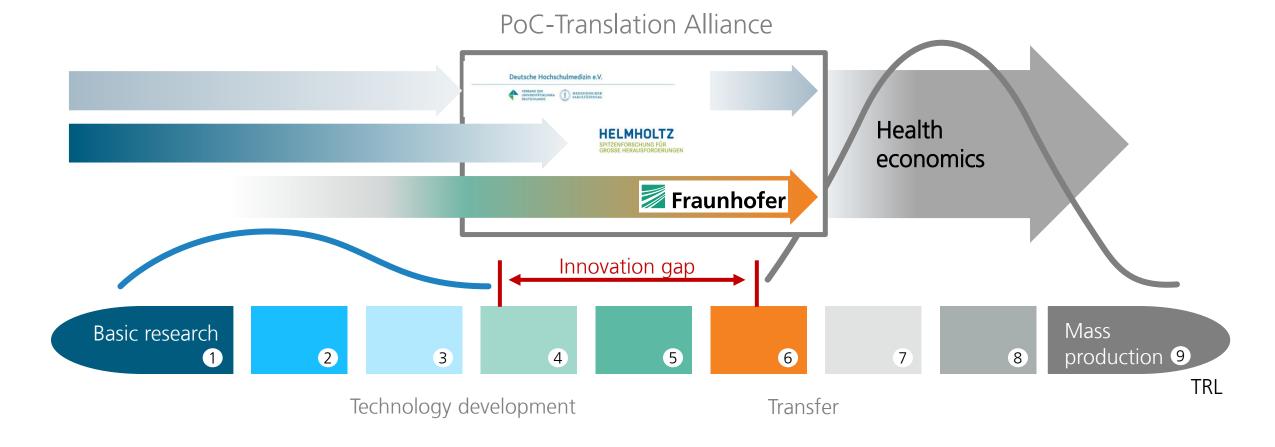
Using health data for research

Data utilization concept for innovative health research

Example: Sovereignty for digital and automated pharma production

Fraunhofer consortium of 8 alliances

- Health
- Production
- Sensor Technology
- Materials and ICT
- Microelectronics
- Light & Surface
- Innovation
- Resource technologies and bioeconomy



Closing the translation gap through strong networks

Universities & non-university research institutions & industry-academy partnerships

Health Technology at Fraunhofer

Living Drugs in Cell and Gene Therapy

Medicine of the Future

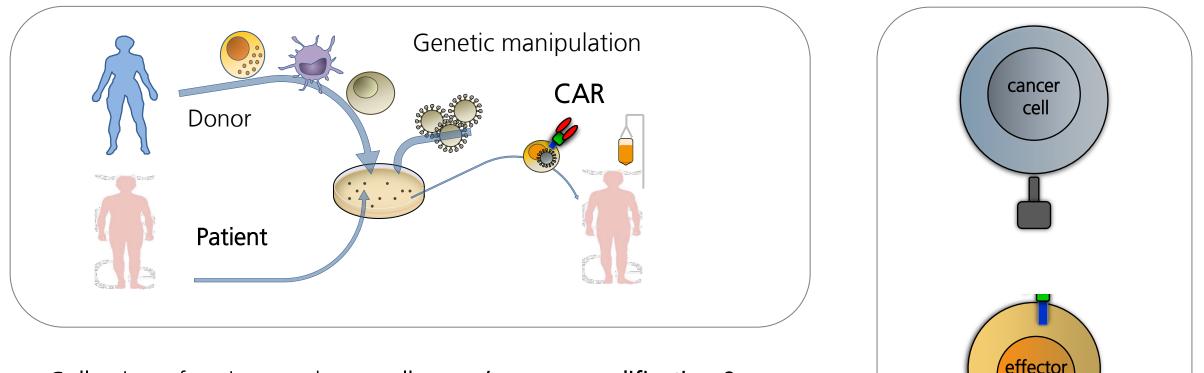
Today Treatment of diseases

- Chemical substances
- Regular intake
- Relief of symptoms

Precision medicine

- Immunotherapies
- Cell and gene therapies (CGT)

Tomorrow Cure of diseases

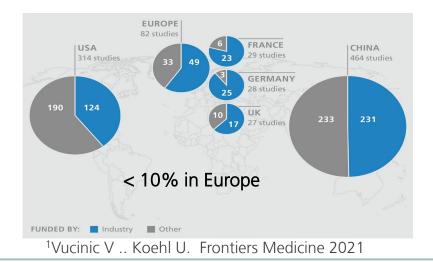

- One-off treatment
- Elimination of the cause
- Long-lasting effect

Healing of Infectious-, Cancer-, Monogenetic-, Cardiovascular- and Neurological Diseases using viral and non-viral gene transfer

Chimeric antigen receptor (CAR)-expressing effector cells

Autologous CAR T cells are state of the art, but first trials with allogeneic CAR effector cells are ongoing

- Collection of patient or donor cells; *ex vivo* gene modification & cultivation of cells; re-infusion of genetically modified cells
- Regulatory: Advanced Therapy Medicinal Products (ATMPs)



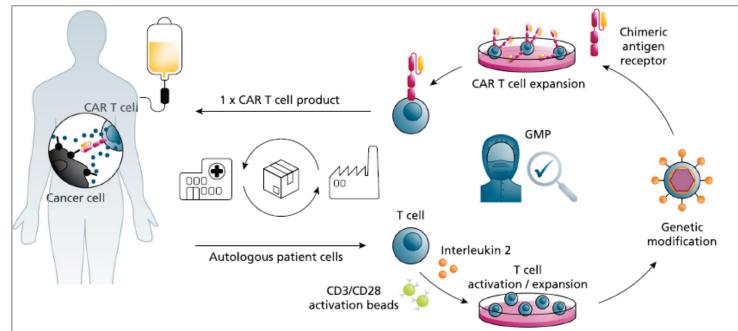
cel

The world of personalized CAR T cell treatment

Emily Whitehead Foundation

ALL = Acute lymphoblastic leukemiaU. KöhlDLBCL = Diffuse large B cell lymphomaMM = Multiple Myeloma

- Outstanding benefit in haematological cancer
 CD19+ ALL and DLBCL, followed by MM
- > 1000 clinical trials, less than 10% in Europe (~ 5% GER)^{1,2}
- 6 approved CAR T products for cancer (anti-CD19, anti-BCMA);
 > ¼ Mill € per batch
- High growth rates in market: 40 Bill € up to 2026^{2,3}
- Currently > 40.000 patients treated^{2,4,5}
- Successful results also in autoimmune diseases⁶


² <u>https://clinicaltrials.gov/</u>Update 11/2024 ³ Pharmaevaluation I Roland Berger GmbH, Feb 2023 ⁴Levine et al. Nat Med 2024

Manufacturing of CAR T cells is complex: State of the art

Process worldwide[#]: Manual up to automated

- 1. stimulation
- 2. transduction
- 3. expansion
- 4. formulation
- Time consuming, complex, expensive / facility running cost and operational cost
- Complex quality control (QC) Identity, purity, impurity, quantity, safety, potency

Blache U, Popp G, Dünkel A, Koehl U & Fricke S. Nature Communication 2022

- <u>Centralized manufacturing</u> 12 days (range 7-22)* with previously, vein-to-vein time 4-6 weeks; currently: shortened protocols up to 2 days
- **Decentralized manufacturing** 12 days (optimized 7) with vein-to-vein time around 2 weeks

Own experiences in manufacturing of cell and gene therapies

IZI GMP Clean Room Facility II > 110 staff members

Film CAR T cell manufacturing at Fraunhofer IZI: U. Köhl <u>https://www.izi.fraunhofer.de/content/dam/izi/de/V</u> ideos/Beitrag_CAR_T_Extern_2018.mp4 CGT = Cell and Gene Therapy GMP = Good Manufacturing Practice GMPDU = GMP Development Unit AAV = Adeno associated Virus

Dep. GMP CGT: G. Schmiedeknecht K. Kebbel Dep. GMP development : S. Fricke, T. Schmid

ATMP manufacturing: Centralized and decentralized

Own experience with a special view to CAR T cells

Centralized academic manufacturing

- Phase I-IV studies up to translation commercial CAR pipeline (Academia & Industry)
- Fraunhofer IZI: large GMP team (>110 staff members) very high standard

Examples:

- 1) CL019/ Kymriah[®] & YTB323/T-Charge (Fraunhofer IZI coop. Novartis) > 500 CAR-T cell products^{1,2}
- 2) Clinical CAR T cell trials in Europe (Fraunhofer IZI coop. Bristol-Myers Squibb)

Requirement for highly technology platforms \rightarrow multiple patients

Decentralized academic manufacturing

- Early phase I/II trials
- possible only with successful training of staff members

Examples:

- 1) CD20 CAR T cells^{3,4} manufacturing at MHH *(coop. Miltenyi and H. Abken)* Team experience: 200 stem cell products & >60 virus-specific T cell products/ year
- 2) ROR1/ROR2 CAR T cells using sleeping beauty manufacturing Fh IZI (coop. M. Hudecek^{*})

Fast transfer of new innovation flaghed a deng Dünkel A, Koehl U & Fricke S. Nature Communication 2022

ATMP manufacturing: Centralized and decentralized

Own experience with a special view to CAR T cells

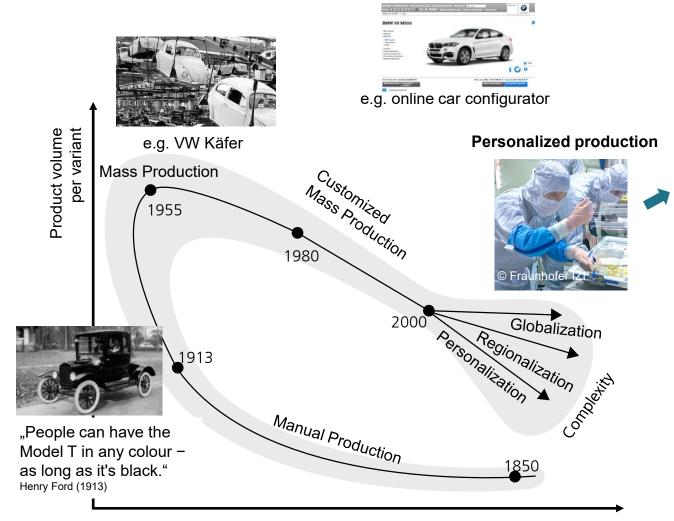
Manual manufacturing

U. Köhl

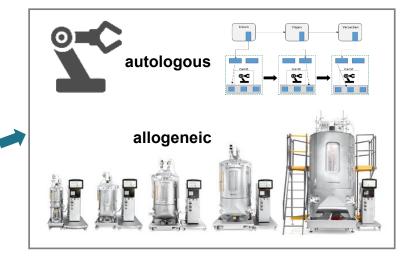
All-in-one bioreactors Semi-automated

ors Scale out Semi-automated / automated Modular process street Automated

Pharma 4.0


Blache U, Popp G, Dünkel A, Koehl U & Fricke S. Nature Communication 2022

³Aleksandrova K et al. Transfusion Medicine and Hemotherapy 2019 *M. Hudecek, H. Einsele, Würzburg and Z. Ivics, MDC Berlin


Mass Personalization – future challenge for ATMPs

In order to address 100-fold more patients

According to Yoram Koren: The Global Manufacturing Revolution; source: Ford, beetleworld.net, bmw.de, dw.de

Al-mediated industry 4.0

- Automation & robotics
- Digitally controlled modular production lines
- Sensor Technology
- Inline sensors
- Machine learning
- Traceability
 - ...

Fraunhofer Lighthouse Project »RNAuto«

Automated production technologies for mRNA based drugs and cell and gene therapies

Fraunhofer Lighthouse Project »RNAuto«

Partners and key competencies

Microelectronics

- Materials
- Health
- Production
- ICT-Technology

Fraunhofer IZI Fraunhofer ITEM Fraunhofer IMM

Fraunhofer IPA Fraunhofer IPT Fraunhofer IESE

Fraunhofer IESE Fraunhofer IMS Fraunhofer IMM

Health

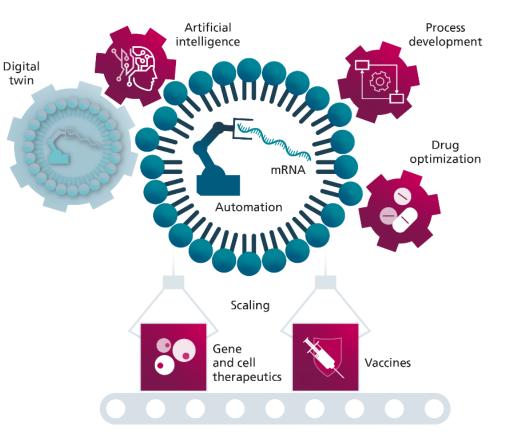
- Vaccines and ATMPs
- GMP Process development

Automation

- Production technologies
- Robotics and sensor technology

Artificial intelligence and sensor technology

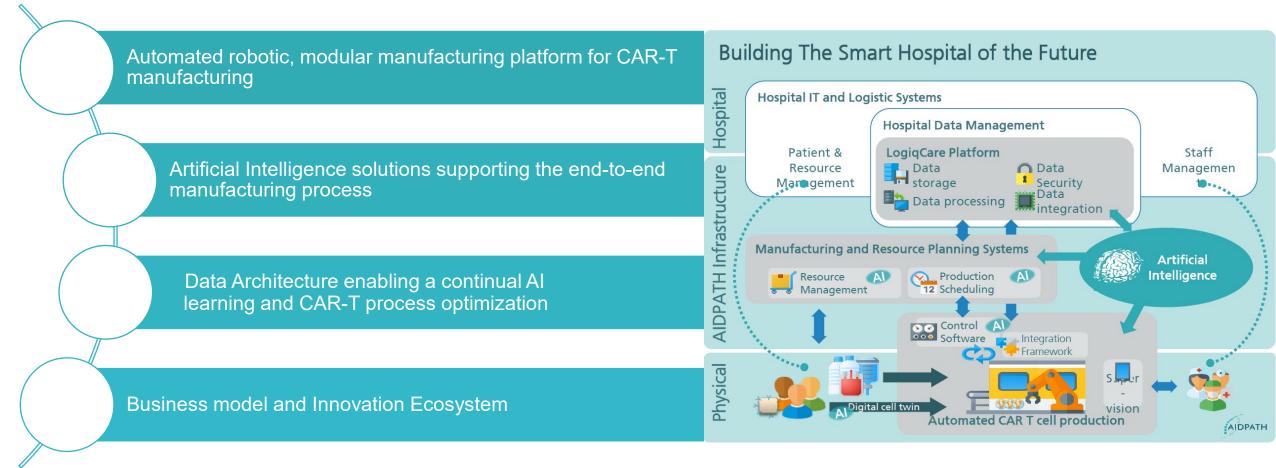
- Digital twins
- Virtual engineering & quality assurance

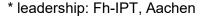

Fraunhofer Lighthouse Project »RNAuto«

Project goals and technologies

Project goals

1. Automatable method for packaging mRNA into nanocarriers

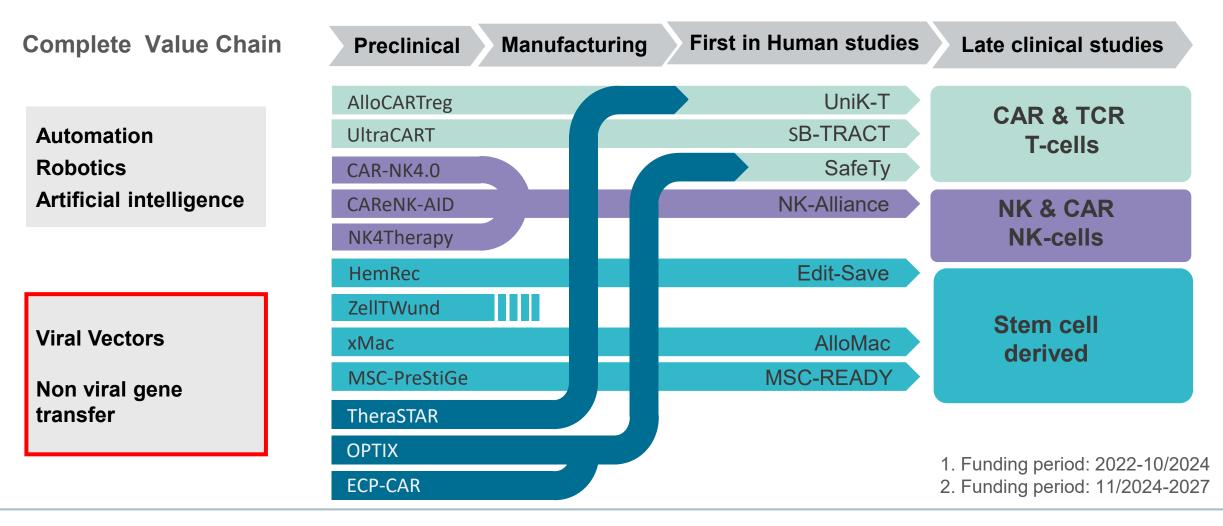

- 2. Development of a **screening platform** for automated mRNA encapsulation with integrated online analytics for quality assurance and documentation for accelerated bioprocess development
- 3. Expansion module with integrated quality control for the production of allogeneic gene and cell therapeutics
- 4. mRNA drug candidates: West Nile Virus vaccine, gene and cell therapeutics for the treatment of hematologic cancers



Artificial Intelligence (AI) and CAR T cell manufacturing

Cluster for cell and gene therapy

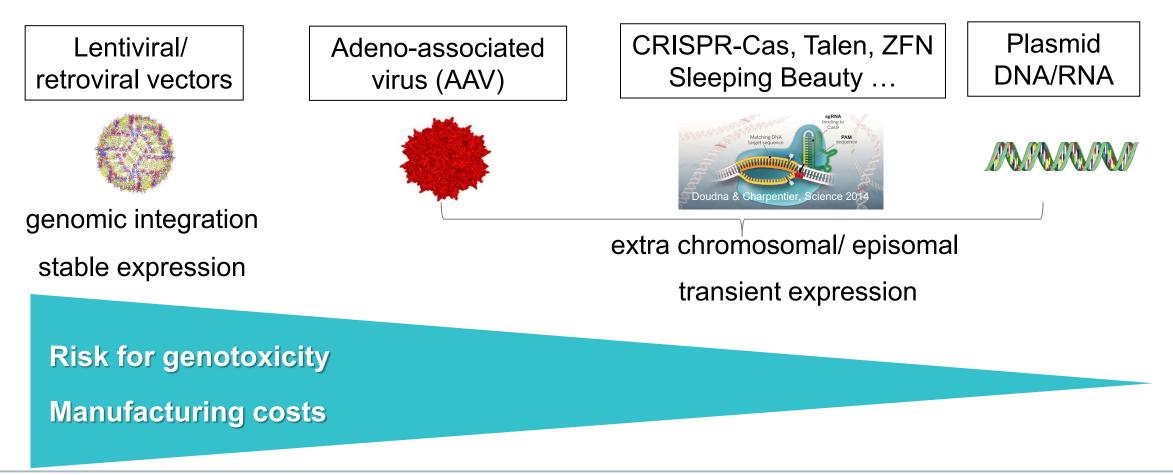
Cooperation approaches & networks - 38 academic PIs and 23 industry partners



Living Medicine SASOCELL®

Cluster for cell and gene therapy

Goals and projects

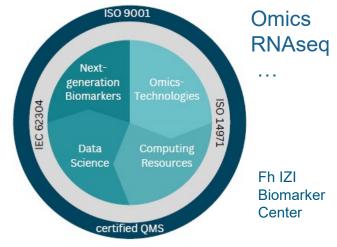


Strategies for genetic modification

From viral to non viral gene transfer for CAR effector cells

Viral vectors

Non viral gene transfer

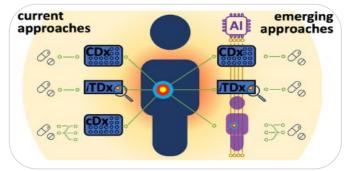


AI: From manufacturing to managing personalized therapies

Biomarker and predictive calculation models for planning and implementation of clinical trials

- Optimization of patient selection
- Support therapy management including predictive parameters for

(i) therapy response (ii) undesirable side effects and (iii) occurrence of secondary malignancies



FDA reported 22 cases sec. malignancy out of 27.000 people after CAR T treatment (Updated March 2024: 33 of 30.000)^{1,2,3}

Real-world evidence analysis (2018-2022) to investigate incidence and prevalence of TCL in patients: MM 0.06%, DLBCL 0.62%

Risk of secondary T-cell malignancies following CAR-T therapy is relatively rare \rightarrow Further investigations are required, FDA requires lifelong monitoring of patients^{1,2,3}

Predictive markers for treatment response

Real-world analysis of 61 patients treated BCMA-directed CAR-T cells

Survival curve

Progression-free survival

Response 🕂 CR 🕂 nonCR

200

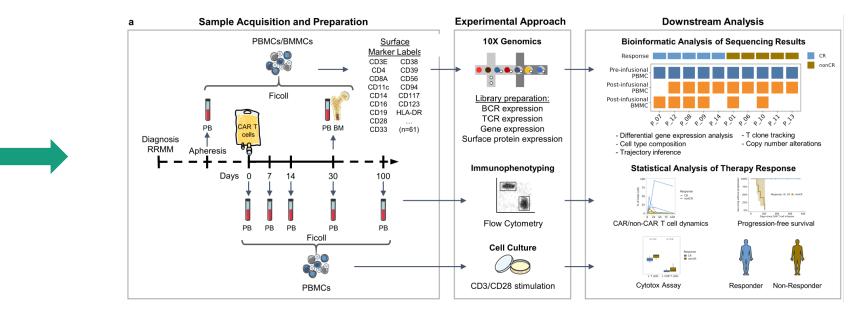
Days since CAR T cell infusion

3

0

Log-rank p-value = 0.0018

300


2

0

400

0

0

Overview work plan

To date, still missing predictive marker

Differences between CR and nonCR could already be identified at the time of leukapheresis

CR = Complete response

100%

75%

50%

25%

0%

CR 5

nonCR 5

0

Number at risk

Surviving without progression

U. Köhl

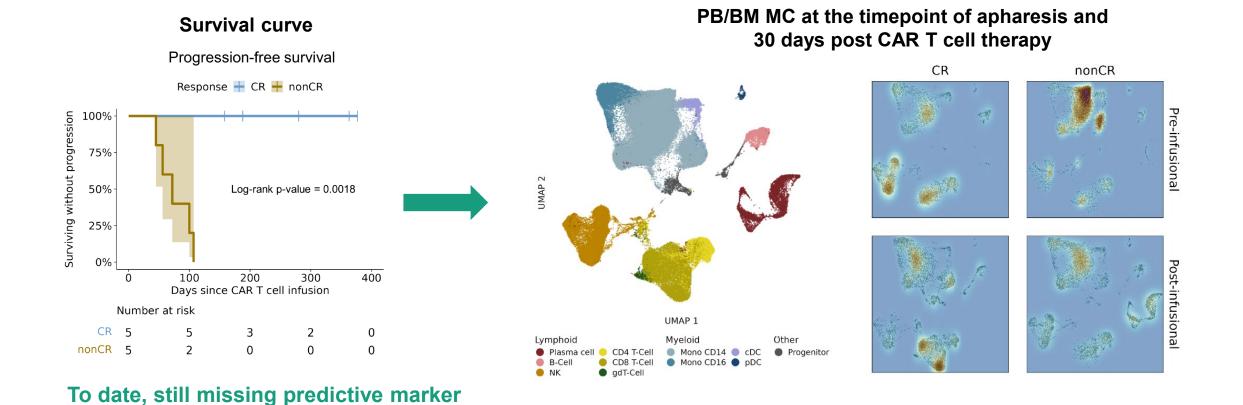
nonCR = non Complete response

100

5

2

PB/KBM MC = Mononuclear cells from peripheral blood or bone marrow


Rade M, ...Koehl U, ...Platzbecker U,...Reiche K,...Vucinic V,...Merz M. Nature Cancer 2024

coop. University Leipzifgand Fh IZI

Predictive markers for treatment response

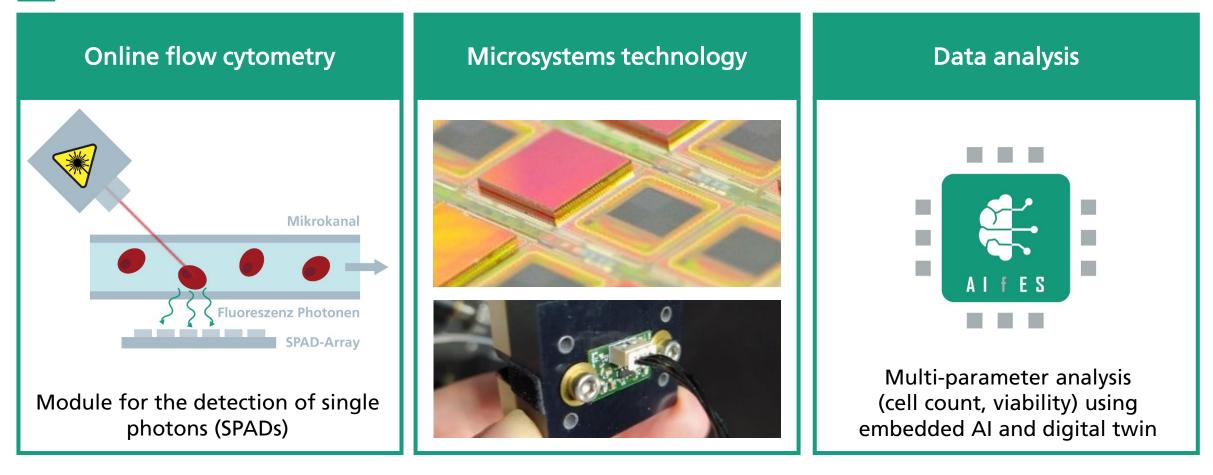
Real-world analysis of 61 patients treated BCMA-directed CAR-T cells

Differences between CR and nonCR could already be identified at the time of leukapheresis

CR = Complete response

nonCR = non Complete response

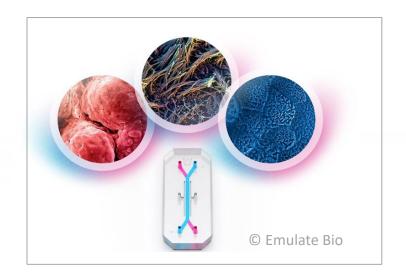
PB/KBM MC = Mononuclear cells from peripheral blood or bone marrow


Rade M, ...Koehl U, ...Platzbecker U,...Reiche K,...Vucinic V,...Merz M. Nature Cancer 2024

coop. University Leipzifgand Fh IZI

Online quality control, sensoric and AI for prediction

Microfluidic flow cytometry with integrated AI analysis



Miniaturization and high integration (optics, fluidics)

Organ on the chips and integration of sensoric for prediction

Future cooperation Fraunhofer IZI, MicroDiagnostic and ENAS

Goal: Orgon on the Chip

Reproduction of human organs on a microfluidic chip

Why:

- Drug testing
- Personalized medicine
- Reduction of animal testing through preclinical disease models

Goal: Integration of sensor technology

- Collection of "real-time data"
- Improving the understanding of disease mechanisms

Requirement

✓ Integration of e.g. optical or electrochemical sensors

Summary: The furture of health technology requires interdisciplinarity

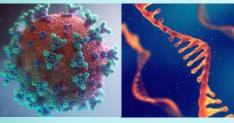
Automation & technical improvements

GMP-in-a-box devices

Modular solutions

Robotics

Sensor technology


Biological optimization and process design

Shorter process design

Allogeneic CGT

Smarter genetic modification

Thanks to

Fraunhofer IZI, Leipzig

G. Schmiedeknecht, K. Kebbel,
Z. Ivics, J. Lehmann, A. Quaiser,
S. Ulbert, D. Kuhlmeier, T. Grunwald,
K. Reiche, S. Fricke, P. Franz,
A. Dünkel, U. Blache, D. Schmiedel,
S. Tretbar, C. Fabian, M. Hudecek

Cellular Therapeutics, MHH Hannover

L. Arseniev, K. Aleksandrova, S. Klöss, J. Leise, R. Esser, W. Glienke,

Clinical Immunology, Univers. Leipzig

U. Sack, A. Boldt, S. Hauschildt, R. Weiss, M. Friedrich, A. Granert

TU Dresden

M. Bornhäuser, F. Buchholz,

E. Bonifazio

Pediatric Hematol / Oncol., Frankfurt

E. Ullrich, S. Hünecke, JH. Klusmann

Kantons-Spital Basel

J. Passweg

Experimental Haematology, MHH A. Schambach, M. Morgan, H. Büning

BSD Hessen/BW und BSD Ost H. Bönig, C. Seidl, T. Tonn

Tumorimmunology, Regensburg H. Abken

Internal Medicine, UKW Würzburg H. Einsele, M. Hudecek

Fh Cluster IESE, IPA, IPT, ITEM, IZI-BB, ENAS ...

Hematology & Cell Therapy, UKL, Leipzig

U. Platzbecker, V. Vucinic, M. Merz, C. Engeland, K. Metzeler, M. Herling

University Cancer Center Leipzig F. Lordick, U. Hacker

Haematol. /Oncol./ SCT, MHH F. Heidel, M. Eder, C. Könecke

Transfusion Med., UKL, Leipzig R. Henschler

Paediatric Dep, UKL Leipzig C. Klemann

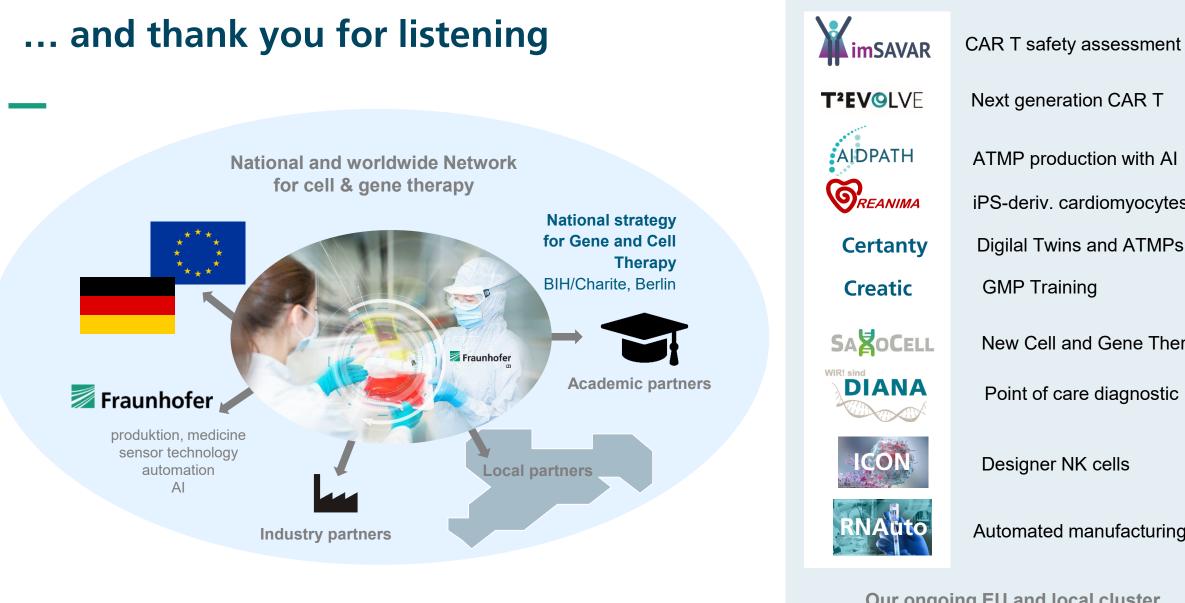
Pharmacology, UKL Leipzig J. Meiler, C. Schöder

Bundesministerium für Bildung und Forschung **Oslo University** K. Malmberg, J. Olweus

Hebrew Univerisity, Jerusalem O. Mandelboim

Georg Speyer House Frankfurt W. Wels

Med III, LMU Munich M. v. Bergwelt


Int. Med. University Hospital, Cologne P. Borchermann, R. Stripecke

MDC Berlin

Z. Ivics

Next generation CAR T ATMP production with AI iPS-deriv. cardiomyocytes **Digilal Twins and ATMPs GMP** Training

New Cell and Gene Therapies

Point of care diagnostic

Designer NK cells

Automated manufacturing

Our ongoing EU and local cluster

