

(BIO)MIMETIC SENSORS FOR HEALTH AND FOOD MONITORING

Dr. Parvaneh Rahimi

TU Bergakademie Freiberg

BIOSENSORS-GROUP

Main research interests:

- Sensor substrate (Bio-)functionalization
- Development of sensing materials and electrocatalysts
- Development of protein-based biosensors (enzyme, antibody)
- Development of nucleic acid-based biosensors (DNA, aptamer)
- Development of (bio)mimetic Sensors
- Biosensor/ mimetic Sensor applications

Development of sensor materials mimicking the activity of biological recognition

- Functional nano-/micromaterials with enzyme-mimicking activities (Nanozymes)
- Molecularly imprinted polymer (MIP); artificial antibody

3 Dr. Parvaneh Rahimi

Development of sensor materials mimicking the activity of biological recognition

- Functional nano-/micromaterials with enzyme-mimicking activities (Nanozymes)
- Molecularly imprinted polymer (MIP); artificial antibody

4 Dr. Parvaneh Rahimi

Electrochemical (Bio)Mimetic Sensors

Integration of mimetic sensing materials with electrochemical systems

 \rightarrow Development of portable, cost-effective, sensitive and stable sensors for various applications.

User friendly Easy fabrication Low cost

5 Dr. Parvaneh Rahimi

Development of Enzyme-free Sensor for Glucose Detection

3D natural Spongin-based composites from Prof. Hermann Ehrlich group

Spongin-atacamite (Cu₂Cl(OH)₃)

6 Dr. Parvaneh Rahimi

Development of Enzyme-free Sensor for Glucose Detection

3D natural Spongin-based composites from Prof. Hermann Ehrlich group

Spongin-atacamite (Cu₂Cl(OH)₃)

Enzymatic glucose biosensors Complex enzyme purification low stability High cost

https://www.vorhofflimmern.de/vorhofflimmern-und-diabetes

7 Dr. Parvaneh Rahimi

Development of Enzyme-free Sensor for Glucose Detection

3D natural Spongin-based composites from Prof. Hermann Ehrlich group

Enzymatic glucose biosensors Complex enzyme purification low stability High cost

https://www.vorhofflimmern.de/vorhofflimmern-und-diabetes

8 Dr. Parvaneh Rahimi

Development of Enzyme-free Sensor for Glucose Detection

Electrochemical Sensing of Gallic Acid in Beverages Using Carbon Nanotubes/Spongin-Atacamite

DPV responses of sensor to successive additions of different concentrations of Gallic acid from 500 nM to 1 mM

 $\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}
\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array}
\begin{array}{c}
\end{array}
\begin{array}{c}
\end{array}\\
\end{array}
\begin{array}{c}
\end{array}
\end{array}
\begin{array}{c}
\end{array}
\begin{array}{c}
\end{array}
\end{array}
\begin{array}{c}
\end{array}
\begin{array}{c}
\end{array}
\end{array}$

Sample	Spiked	Detected	Recovery	RSD
	(μM)	GA (μM)	(%)	(%)
Black tea	-	30.7	-	3.2
	10	40.6	98.2	2.3
	30	59.9	97	2.6
Green tea	-	31.2	-	3.6
	10	41	98	2.9
	30	62	102	3.5
Red wine	-	18.2	-	4
	10	27.8	95.2	3.3
	30	47.4	97.1	3.5

Falahi et al., Biosensors, 2023, https://doi.org/10.3390/bios13020262

10 Dr. Parvaneh Rahimi

Simultaneous Detection of Dopamine and Tryptophan using 3D Goethite-Spongin

and TRP (2-230 µM) and corresponding calibration curves

Dr. Parvaneh Rahimi 11

40. Chemnitzer Seminar; Sensor Systems for One Health, 03.-04. December 2024

presence of 80 µM DA and TRP

Falahi et al., Biomimetics, 2024, https://doi.org/10.3390/biomimetics9060357

Dr. Parvaneh Rahimi

MIP based Electrochemical Sensor for Progesterone Detection

(Erasmus +, YEMAYA Project: African Women in Science)

- Progesterone is a 21-Carbon hydrophobic Steroid Hormone; produced by Adrenal cortex, Gonads (ovaries in women, testes in men), Ovarian corpus luteum (first 10 weeks of pregnancy), Placenta (later phase of pregnancy)
- Synthetic progesterone: utilized in both human and veterinary medicine for various purposes, e.g. as growth
 promoters in cattle and as contraceptive pills.
- × Steroids are among the most potent endocrine disrupting compounds.
- × They reach aquatic ecosystems from natural excretion by humans and livestock.
- × Progesterone's EDC effects can lead to various health issues

MIP based Electrochemical Sensor for Progesterone Detection

(Erasmus +, YEMAYA Project: African Women in Science)

13 Dr. Parvaneh Rahimi

MIP based Electrochemical Sensor for Progesterone Detection

(Erasmus +, YEMAYA Project: African Women in Science)

Optimization

- > Electropolymerization Parameters, Template to monomer ratio and polymerization cycles
- Number of cycles for removal of progesterone
- Buffer solution for removal of progesterone
- Rebonding time

Future Outlook of (bio)Mimetic Sensors

- Advancements in Material Design
 - o Renewable and Sustainable Materials like carbon quantum dots
 - o Molecular Engineering
- Multi-Analyte Detection in medical diagnosis and food safety
- Integration with Emerging Technologies
 - o Wearable and Portable Devices
 - Internet of Things (IoT)
- Overcoming Current Challenges
 - o Development of scalable and cost-effective manufacturing methods
 - o Enhance the specificity and selectivity

Dr. Parvaneh Rahimi

https://tu-freiberg.de/esm/ag-biosensoren

https://www.linkedin.com/in/parvaneh-rahimi-71671983/

parvaneh.rahimi@esm.tu-freiberg.de

Thank you!

16 Dr. Parvaneh Rahimi