

Enhancing One Health through Advanced Microfluidic Systems

Christian Walk

Business Development Manager

03/12/24

Talk at the 40th Chemnitz Seminar, "Sensor Systems for One Health", Session 3: Biosensors

Table of Contents

- 1. About Micronit
- 2. Manufacturing Capabilities
- 3. Our Services
- 4. Working together on Lab-on-a-Chip Consumables Development
- 5. Reference Cases

About Micronit

Micronit is the leading global contract development and manufacturing partner of microfluidics-based consumables. We enable products in life science and health applications.

Independent powerhouse of microfluidics

Our Manufacturing facilities

- Production of Glass, Polymer, Silicon and integrated chips
- ISO 9001:2015 and ISO 13485:2016 processes.
- Focus on world class manufacturing and continuous improvement
- 600m2 Cleanroom space (class 5-8), total space 1000m2
- Manufacturing team: ~50 experienced and dedicated team members
- Low, medium and high volume up to 1M on consumable level
- >50 customers served in last 6 months
- Process Quality Control: direct insight via control charts/SPC

Manufacturing technologies

Personalization of healthcare - towards 4P medicine

Individualization of the treatment

The microfluidic field

From lab to near patients

Research

in the lab (centralized)

on multiple instruments

Single flow cell chip

Clinical

- automated lab workflow
- **Sull**

lab-on-a-chip

Point of Care

at home

9

personal handheld

Sur

Autonomous lab-on-a-chip

Micronit's core segments in healthcare & life sciences

Multi-omics, with target applications such as DNA sequencing (including NGS) and Single Cell Genomics but also emerging derived applications such as Data Storage and Liquid Biopsy.

Microfluidics-based tools for cells sorting, manipulation and analysis are used more and more for diagnostics and therapeutics applications.

Point-of-Care (PoC) diagnostics is the largest segment within the Point-of-Need testing market. New opportunities in this market are offered by an increasing number of mid-/high-end molecular tests (DNA and RNA analysis) reaching the market. These require integrated lab on a chip consumables in turn for a better performance, ease of use and a higher average selling price.

Drug delivery is a market which Micronit addresses today based on existing capabilities (such as micro needles and nozzles).

Organ-on-Chip technology, used for Drug development (discovery & screening), are still in their early days but have the potential to enable personalized medicine and provide better models than currently used.

Platform technology approach

Development

From a single chip to platforms with multiple functionalities

LoaC platforms as optional starting point for development

Point-of-Care Diagnostics

- Simple to use cartridge
- Fully or semi-autonomous
- Molecular diagnostics
- Strong Micronit IP position (manufacturing and design)

Clinical research and

Diagnostics

- Complex workflow
 automation
- PCR/qPCR/dPCR
- Next generation
 sequencing

•

Manufacturing Micronit IP position

Pharmaceutical and

Life science

- Cell and particle sorting with a variety of principles
- Clinical research
- Manufacturing Micronit IP
 position

Personalized medicine and Cell therapies

- Standard microtiter plate
- Hybrid integration of microfluidics / MEMS
- Biomimetics
- Manufacturing Micronit IP position

Microfluidic cell sorting technologies

- 1. Acoustophoresis (SAW)
- 2. Dielectrophoresis (DEP)
- 3. Microfluidic switching
- 4. Pinched flow fractionation (PFF)
- 5. Deterministic lateral displacement (DLD)
- 6. Magnetic levitation

Considerations regarding "integration"

- There are various integration "cross-sections":
 - Die- / module-level vs. wafer-level: virtually always a hybrid / heterogeneous combination of materials
 - Permanent integration vs. temporary integration: the latter is often more an interfacing task
 - full integration of sensor functionalities but for instance also of flow control means
 - No integration but placing functionalities in an instrument
- For microfluidic cartridges, the challenges are often found in the permanent modular and in full integration or combinations thereof
- Choices are driven by various criteria:
 - Flexibility in the Development stage
 - Functionality
 - Cost (e.g. Dx platforms)
 - Robustness

Modular integration and required competences

Integration around modular components:

- Fluidic manifold, often comprised of a thermoplastic polymer, providing (fluidic) access to glass/silicon/polymer modules (e.g. serving as a sensor)
- Integration of actuators, e.g. piezo components
- Integration of electronics / controls, e.g. in the form of a (flex-)PCB

Required competences:

- Design and fabrication of manifolds
- Portfolio of integration technologies, most notably adhesive bonding
- Compliance with standards that guarantee robustness

Die-level integration competences

Manufacturing

- Adhesive printing
- Capillary underfilling via accurate dispensing
- Die bonder / pick-and-place
- Automatic tape / film placement

Integrated Laboratory Automation into lab-on-a-chip consumables

0 0 0

Showcases

Acousort - Acouwash

- > Automated Cell and Blood Sample Separations
- > Using Acoustophoresis
 - > Surface Acoustic Wave (SAW) in microfluidic channel
 - > Separate blood components and contaminations

Near patient diagnostics: Enzycard

Handheld micro-laboratory to monitor blood coagulation status of any patient anywhere in the world, enabling fast action to prevent or stop bleeds.

ENZYCARD Disposable cartridge Test specific reagents

1. Assay Integration

automation.

ENIZINE

4. Chemistry & Reagent Integration

5. Imaging & Analysis

6. System Integration

Enzycard - advanced next generation diagnostics consumable

Focus on microfluidic development with specific integration challenges /requirements:

- High density fluidic access / non-contact
- Intimate optical access
- > Blood filter for sample preparation
- > Blister for buffer storage
- > Capillary flow-based sample dilution
- > Surface coating
- > Spotted reagents
- > Integrated CMOS sensors for detection

Injection molded manifold to flowcell-piezo assembly

Combination of competences required:

- Micron-accuracy placement of piezo actuator with sub-micron adhesive layer thickness
- Capillary adhesive underfilling for connecting a polymer manifold to the flowcell-piezo sub-assembly
- Robust processes, compatible with transportation standard IEC 60068-2-38

Product development and manufacturing with specific challenges:

- Highly accurate glass flowcell
- Accurate piezo assembly
- Robust polymer-glass integration

Smart Multi-Well Plate

- Multitude of different components for integration
- Long term fluid exposure

Single point of contact

Scaling up your project from small volumes to larger quantities can be challenging.

1.

2.

3.

4.

5.

6.

- Selection of the right materials and components
- Translating functionalities into a feasible design
 - Gaining control over fluidics
- Integration with relevant instruments and workflows
 - Reliability and feasibility
 - Ensuring data-analysis and read-out options

Business challenges

- Aligning diverse expertise of project members
- Maintain product pricing within your business case
- Keep the project on the timeline
- Managing expectations for future growth
- Ensuring market adoption
 - Quality & certification

Summary

- Independent microfluidics expert center
- More than 20 years of experience from idea to production (Stage Gate approach; six sigma)
- ISO9001 and ISO13485 certified
- Cleanroom for 200 mm glass and silicon processing, running 2-shift manufacturing
- Installed base of equipment and infrastructure for polymer cartridge prototyping and repetitive small series
- In-house equipment and technologies for die-level and wafer-level integration

Thank you for your Attention.

We look forward to working with you!

Christian.walk@micronit.com

+31 (0)53 8506850

www.micronit.com