Electrodeposition of Aluminum towards wafer level thermo compression bonding

Silvia Hertel, M.Eng Chemnitzer Seminar 2019

Electrodeposition of AI: Why?

Microsystem technology

- Al as conducting and connection material
- Al as bonding material → assembly and packaging
- Al and its anodized layer → medical applications, micro fluidics, micro reactors, insulated micro coils
- Al as optical material due to highly reflective character → micro optics

Printed circuit board

- Cu as metal for numerous of applications
 - Electricity net (buried cables)
 - Electrode material in Li-Ion batteries
 - PCBs
 - \Rightarrow Supply bottlenecks for PCB industry
- ⇒ Al as alternative material due to higher specific conductivity and availability

Al wire bonds on ECD-Al

anodized ECD-AI (ECD @ENAS, Oxidation @ Smart Membranes

Electrodeposition of AI: Why?

AI-AI Thermo compression bonding State of the Art

- High temperatures and bond pressures needed
- Diffusion is inhibited because of native oxide layer
- Removal of Al oxide prior to bonding not possible (except of in situ plasma treatment)
- Use of thin PVD layers → compression is limited

Why could electroplated Al overcome some current challenges?

- Grains in as-deposited AI layers are thermally active
- ECD-AI shows higher roughness than PVD-AI → cracking of AI oxide layer
- Al as well-malleable material → thicker Al layer as intermediate bonding material can improve the thermo-compression bonding process
- No specific grain orientation

Grains merged, if sharing at least two Σ 3 boundaries

Electrodeposition of AI: How to?

Chemical structure

■ E_{Al}^{0} = -1,67 V vs. NHE → deposition from aqueous solutions is not possible

 \rightarrow ionic liquids (IIs) are used

- ILs= organic salts with a melting temperature < 100 °C</p>
 - Properties are tunable by varying the composition
 - Wide electrochemical window
- Use of EMImCI/AICI₃ 1:1,5 (~150 g/I AI)
- Moisture sensitivity of IL requires inert gas atmosphere

ECD process for double-side deposition and reaction equations

Glovebox with N₂ atmosphere

Electrodeposition of AI: Process equipment

Electrodeposition of AI: Process equipment

@ Fraunhofer ENAS:

- Plating setup for 6 inch waferlevel inside a glovebox
- 180 ° tiltable cathode face up, Anode face down

@ NB Technologies:

- Plating in standard fume hood
- deposition cell is rinsed with N₂ during sample exchange
- Cathode face down, anode face up

TECHNISCHE UNIVERSITÄT

CHEMNITZ

Electrodeposition of AI: Process development steps

- Electrodeposition process of AI on various substrates developed incl. pretreatment of seed layer
 - Si wafer
 - Glass and ceramics
 - PCBs
- Up scaling from chip to 4 inch to 6 inch wafer level coating
- Optimization of the plating set up using fluid dynamic simulation
- Pattern Plating with photoresists and selective etching of Cu seed layer
- Showing the feasibility of AI deposition in vertical interconnects down to 200 µm in PCBs (AR: 1:5)

Bundesministerium für Bildung und Forschung

Electrodeposition of AI: wafer level plating

- Deposition parameters have to be adjusted for different seed layer
- AI ECD on AI seed layer needs further process development
- ⇒ First bonding trials with AI on Au seed layer
- Deposition on highly doped Si without seed layer possible
 - thermal post treatment necessary for sufficient adhesion

Bundesministerium für Bildung und Forschung

Electrodeposition of AI: wafer level plating

- Preparation of wafers with Au seed layer for bonding trials
- Deposition with same parameters shows reproducible layer thickness
 - Overall average thickness: 8,17 ± 0,30 µm (12 wafer)
 - Some wafers are post treatet with CMP

Mikrotechnologien

ENAS

Bonding with electrodeposited AI: overview

Wafer ID	Materials	F(MPa)	Temp	
1+1 (program error)	ECD+PVD	47	500°	Limit of bonder (EVG540) \rightarrow are the asperities to high? Substrate cracking?
2+2	ECD+PVD	47	500°	
11+3	ECD+PVD	35	400°	Temperature reduction
12+4	ECD+PVD	52	400°	
3+13	ECD+ECD	52	400°	ECD vs ECD AI, What are
4+14	ECD+ECD	35	450°	challenges here?
16+5	ECD+PVD	35	450°	Same parameters with same behavior?
17+6	ECD+PVD	35	450°	
7+7	ECD+PVD	35	450	CMP pretreatment: How is the bonding working without the high roughness
6+8	ECD+PVD	21	450	
5+9	ECD+PVD	35	400°	

Bonding with electrodeposited AI: dicing yield

TECHNISCHE UNIVERSITÄT

CHEMNITZ

Bonding with electrodeposited AI: dicing yield

CMP pretreatment to remove asperities from ECD layer

400 °C, 35 MPa

450 °C, 21 MPa

450 °C, 35 MPa

Nearly 100% dicing yield \rightarrow missing chips on the edges should not have been bonded due to current collectors

Bonding with electrodeposited AI: cross sections

- High pressure + high temperature result in good bonding without visible interface (1+1, 2+2)
- Bonding of ECD vs. ECD need CMP at least on one side to reduce misalignment

Bonding with electrodeposited AI: cross sections

- Asperities can be pressed into PVD-AI layer
- Roughness is to high to achieve a void free interface
- FIB preparation shows grain structure
 - Large grains for ECD-AI
 - Grain interdiffusion started on asperities at 400 °C

Bonding with electrodeposited AI: cross sections

- Cross sections look well bonded
- Interface is visible in higher magnifications
- FIB preparation shows large AI grains on ECD side, but small grains on PVD side with no tendency to grow
 - \rightarrow no interaction at the inferace due to AI oxide

Mikrotechnologien

ENAS

Bonding with electrodeposited AI: bond strength

- 10 samples per method characterized
- Pull test dependents on glue interface to stud
- Without optimized parameters the strength can be compared to other TCB combinations

Conclusion

- ECD of AI on wafer level is a reproducible process @ ENAS
- ECD-AI peaks can crack the AI oxide layer
 - Roughness to high to compress it
- Parameter scan for AI-AI-TCB
- Bonding with ECD-AI is possible: 400 °C, 35 MPa as lowest parameter set
- CMP can be applied to remove asperities of ECD-AI
- Hermeticity not clear yet
- ECD-AI is thermally active: grains can diffuse together
- PVD-AI is sputtered with highest power → grains are thermally inactive and show no diffusion any more

Outlook

- Deposition process development of AI on AI seed layer ongoing
- Using low power sputtered AI for bonding to achieve better grain diffusion
- Bonding of ECD vs ECD AI with at least one CMP treated side
- Further reduction of bond temperature and pressure
- Detailed pull strength analyzation
- Hermeticity tests

Outlook and Roadmap for ECD-AI

Basics of AI-ECD on

evaluated within AioLi-

2017

various substrate

Al in PCBs

Al coated mulilayer PCBs incl. via technology and soldering on Al surfaces

Investigation of the bonding behavior of ECD-Al in Al-Al-Thermocompression bonding

First results presented

2019

AI-Pillars for Flip Chip assembly resulting in an homogeneous package between MEMS, ASIC and PCB

10 µm

Quelle: Reliability of hybrid bond interconnects

Flip Chip assembly using AI

Si

Pillars in future

Quelle: Yole Report 2017: Status of Advanced Packaging

Advanced Packaging of all components

AI-TSVs for MEMS applications and hybride wafer bonding with AI

Development duration is an estimation: acceleration is possible if industry push it in application cases

2027

2023

project

Thank you for your attention

Silvia Hertel

System Packaging

+49 371 45001 277

silvia.hertel@enas.fraunhofer.de

SPONSORED BY THE

Federal Ministry of Education and Research

Supported by:

TECHNISCHE UNIVERSITÄT

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag

