Capacitive Micromachined Ultrasonic Transducers for Medical and Non-medical Applications

N. Saeidi, K. Selvam, K. Vogel, M. Baum and M. Wiemer

Chemnitzer Seminar, 21-22 May 2019

Department System Packaging

Outline

- Introduction
- Concept
- Fabrication Technologies
- Design Parameters
- Research on CMUT at ENAS

CMUT

Capacitive **M**icromachined **U**ltrasound Transducer

- A miniaturized MEMS device for generating and receiving ultrasound waves
- Introduced in 1994 by Stanford
- First in market by Hitachi in 2008

Pros & Cons

- Wide frequency bandwidth
- Batch processing (standard silicon processing)
- Possibility to integrate with the driving electronics
 - Various configurations, geometries
 - Good acoustic matching
 - Miniaturized
- Wide operation temperature range

High driving voltage Cell crosstalk

Application

Dominated by medical imaging

• Endoscopy, Probe or Catheter based

Butterfly Network

- First handheld CMUT probe
- Battery operated
- Connected to smartphone

4

Application

Other applications

- Medical therapy
- Photoacoustic imaging
- Gas flow sensors
- Acoustic actuator / manipulator
- Non destructive testing

Market and the players

Market

- CMUT market is rapidly expanding.
- Medical imaging remains the main applications.

MUT market status (Yole Development, July 2018)

Players

- Research
 - Stanford University, University of Roma Tre, Fraunhofer, Imec, ...
- Industry
 - Hitachi, Butterfly Network, Philips, Kolo, Vermon

Concept

Usually a CMUT probe / device consists of an array of CMUT cells

Key components of a CMUT

- □ Membrane (size and material)
- **Gamma** Single or multi layer
- **Gap between the two plates / electrodes**

Concept

Recently introduced mode of operation

Conventional Mode

Collapse vs. conventional

- Enhanced receive / transmit efficiency (sensitivity)
- □ Higher output pressure

K. K. Park, et al,, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 60, no. 6, pp. 1245-1255, June 2013.

Fabrication technologies

9

Design parameters

... a complex multiphysics system

Finite element analysis (FEA) tools are used to calculate device parameters.

Research on CMUT at ENAS

Design, Technology Development, Fabrication and Characterization

CMUT wafer prior to dicing

CMUT assembled on ¼ " capsule or characterization

Multifunction sensor with ultrasonic transducer for air applications High temperature stable component for applications up to 300 ° C

Microscope image of a fabricated CMUT

CMUT on test PCB

CMUT on TO package

Research on CMUT at ENAS

Development flow

16 © Fraunhofer ENAS

Research on CMUT at ENAS

	—— Fabrication Flow	
back side	front side	
front side Si wafer	Si wafer back side	
SiO ₂ growth & Si ₃ N ₄ deposition	Cavity etch	Direct bonding
	SiO ₂ growth	Membrane release
Top electrode deposition & pattern	Bottom electrode deposition	
	SiO ₂ deposition & anneal	
SiO ₂ deposition & anneal		SiO ₂ etch
	СМР	
СМР	SiO ₂ etch in cavity	Bond pad opening

Array of CMUT cells

Performance characterization

- Wafer / Device level characterization (SAM, WLI, LDV,...)
- Electrical characterization
- Acoustic characterization (with hydrophone)

While light interferometry of CMUT membranes

Scanning acoustic microscopy (SAM) image of a bonded wafer pair

 Multimeter

 Multimeter

 Probe 1

 Probe 1

 Probe 1

 Probe 1

 Probe 2

 Vafer \ Sample Holder

 Probe Station with Microscope

Electrical characterization setup

Performance characterization

Example of acoustic pressure characterization at distance of ca. 28 mm from the source (CMUT)

Ongoing work

- Device design for different specifications (applications)
- Comprehensive and coupled FEA modeling
- Receive / transmit characterization
- FEA verifications

Acknowledgements

- German Federal Ministry of Education and Research (BMBF)
- Fraunhofer Society
- Center for Microtechnologies (ZfM) at TU Chemnitz

