Tamper Respondent Envelope Solutions Realized by Additive Manufacturing

<u>F. Roscher</u>, N. Saeidi, F. Selbmann T. Enderlein, E. Kaulfersch, J. Albrecht, E. Noack, C. Hannauer, A. Lecavelier, M. Wiemer and T. Otto

CHEMNITZER

Fraunhofer Institute for Electronic Nano Systems, Chemnitz, Germany Chemnitz University of Technology, Center of Microtechnology

JUNE 13 AND 14, 2017 | FRAUNHOFER ENAS TECHNOLOGIE-CAMPUS 3 | 09126 CHEMNITZ

CHEMNITZER SEMINAR SYSTEM INTEGRATION TECHNOLOGIES

<section-header> Smart Packaging Solutions for
Secure Applications Image: Control of the secure of the

Outline

Motivation for tamper responded envelopes

- Technologies to enable customizable tamper responded envelopes
- Process Chain and build-up insights
- Reliability and security investigations
- Conclusion

Motivation

Functionalized Packaging Components as tamper responded secure features

A new security tool box for secure electronic systems is introduced by cooperation between

- Thales System Architecture, Electronic Design, Use Cases and Reliability Characterizations
- AT&S Embedding of Active and Passive Components into PCB
- Nanium Secure System in Package Solutions
- Epoche&Espri Security Evaluation
- FRAUNHOFER ENAS Tamper Responded Envelope Solutions

Combining the Know-How of all partners a novel high-tech security toolbox for electronic systems is presented

6

Technologies Concept

Process development to enable a scalable, 3D ready process chain capable to fabricate fine feature tamper detection envelope solution for electronic system with a lot sizes from 1-10000 pieces.

Needed:

- Digital fine pitch, 3D ready deposition process for conductive materials
- Conformal dielectric coating technology for 3D substrates
- Process for via fabrication to enable a multilayer mesh approach

Low temperature processes < 150°C to enable the usage of sensitive / polymer / low cost substrates

Technologies

Concept & Process flow (schematic)

Thin film encapsulation/insulation to build defined surface by CVD -> ~2µm

AJP 1st Ag layer → **1,5µm**

+

Thin film encapsulation/insulation by CVD to passivate 1st Ag layer **(~2µm)** and laser ablation to open vias

Thin film encapsulation / insulation to passivate 1st Ag layer (~2µm) and laser ablation to open vias

AJP 3rd Ag layer and interposer attach by epoxy

Within UNSETH a **novel process flow** is introduced to fabricate **customized tamper detection** components for electronic packages

Technologies Aerosol Jet Printing

Toolbox

- a. Mask: mask less → digital manufacturing using i.e. dxf file
- b. Pneumatic or ultrasonic atomizer, impactor, shutter and print head
- c. X&Y vacuum table to move the substrate
- d. Material: Ink system [colors, insulators, solder, metals, etchants, ...]

Technologies Aerosol Jet Printing

Toolbox

- a. Mask: mask less → digital manufacturing using i.e. dxf file
- b. Pneumatic or ultrasonic atomizer, impactor, shutter and print head
- c. X&Y vacuum table to move the substrate
- d. Material: Ink system [colors, insulators, solder, metals, etchants, ...]

Schematic process flow

Technologies Aerosol Jet Printing

Toolbox

- a. Mask: mask less → digital manufacturing using i.e. dxf file
- b. Pneumatic or ultrasonic atomizer, impactor, shutter and print head
- c. X&Y vacuum table to move the substrate
- d. Material: Ink system [colors, insulators, solder, metals, etchants, ...]

Example / Demo: printing on PCB, overprinting mold

Aerosol Jet® System AJ300 [Optomec]

process

Technologies Aerosol Jet Printing

- 300 x 300 mm x-y-Vacuum stage
- Print Speed: max. 200 mm/s
- 2 Atomizer systems
 - Pneumatic Atomizer [1cP 1000cP, 15ml fluid]
 - Ultrasonic Atomizer [1cP 5cP, 1ml fluid]
- Aerosol-, Ink- and substrate heater
- Fine feature print head [min. line width 10 µm]
- Laser-Curing-System [IR Laser, 700mW, 830nm]
- Material in-flight mixing option

Technologies Parylene C CVD

- Conformal coating close to room temperature
 < 5% thickness variation
- Conformal coating for high aspect ratio patterns
- Conformal coating for 3D objects (Chemical vapor deposition)
- Highly transparent (security aspect)
- Good moisture barrier
- Stable ε_r ~ 3,3

Equipment at ENAS	50
	-
	f cHu-()-OH }
CHi CHi CHi Dimer Dimer Dimer Solid Dimer gas	Monomer Polymer gas (dX tilm)
dix	7
Vaporizer Pyrolizer Costing	
180'0 659~700'0 Room temp. 50m Torr	Trap

Properties of Parylene C	
Melting point	290°C
Temperature stability	125°C
Peak Temperature	200°C
Water absorption in 24h	0,06%

Equipment at ENAS

В

Technologies Laser Ablation

 355nm wavelength has been developed for 50 µm x 200 µm vias for 1 µm and 2,5µm thick Parylene C

COOPERATION

1064 nm

Results Fabricated Demonstrators

 AJP + Parylene CVD + Laser Via process enables reliable multilayer mesh build

Build up	2 x conductive Mesh layers 2 x dielectric Parylene C layers 1 x via layer
MESH	4 independent loops (each ~ 3m) (Line width ~ 150μm, Spacing ~ 250μm)

FIB cross-sections of via area

Top View Secure envelope

Results Fabricated Demonstrators

Materials

- Conductive Mesh: Ag Nanoparticle Ink
- Dielectric: Parylene C
- Substrate: PPS (GF enhanced)

Fabrication

- Combination of AJP, CVD, Laserablation
- All processes less than 125°C

Electrical properties

- Via < 5Ω</p>
- Printed Tracks < 1kΩ/m</p>

Security

- Line/Space: 150/250µm
- Evaluation ongoing

Reliability

Tested

FIB cross-sections showing the relation of multilayer mesh and metal tap for interconnection towards PCB

Reliability investigations Conclusion

Tested

- Multilayer Build-Up 2xAg layers, 2xparylene layers, laser vias
- Interconnection approach (Pogo pin, metal tap)

→ Combination of printed Ag nanomaterial and
 Parylene dielectric layer is a reliable material concept

Test	Result	Comments
Thermal Cycling -55°C/125°C, 30min	> 500 cycles passed	No failures detected
Thermal Storage @125°C	1000h passed, within + 5% resistance change	No delamination, no cracks
Torsion Test 7° & 10° at 30°	> 20.000 cycles passed @ 7°	Test performed with CAP on PCB \rightarrow PCB components will fail 1 st
Vibration Test	Passed Step-Stress Test @ resonance frequency	Test mainly dedicated to test the pogo pin interconnection →PCB components will fail 1 st
Pull Test & Shear Test	Adhesion for Ag nanoparticle ink on different substrate materials available	Pretreatment procedure developed before the printing step (Ar/O ₂ plasma treatment)

Reliability investigations XRAY for security

- XRAY Invisibility for full area cap scan
 - Resolution limited (> 50µm) when analyzing the 164 x 110 CAP substrate

Nanotom® [GEsensing]

Reliability investigations XRAY for security

- XRAY Invisibility for full area cap scan
 - Resolution limited (> 50µm) when analyzing the 164 mm x 110 mm CAP substrate
- Idea of Mesh Build achievable for small area scan
 - High resolution scan (without damaging/cutting the substrate ~7µm) on 14 mm x 10 mm

Nanotom® [GEsensing]

Not easy to enter!

Enormous effort is needed to understand the secure mesh build-up even when using HighEnd XRAY Tomography

Printed tracks visible

Printed tracks visible but multilayer buildup not clear

Conclusion

Secure tamper respondent envelope presented

- Realized by digital additive manufacturing
- Lot size 1 could be realized / design could be changed with each product

Scalable and customizable process chain developed and tested

- Process temperatures < 125°C</p>
- Suitable for low cost polymers
- Process flow is transferable to other substrates and geometries

Reliability investigations show that the combination of Ag nanoparticle lnk and Parylene C enables multilayer mesh approach

 \rightarrow Outlook: full security evaluation for the system (CAP, SiP, PCB)

Thank you for your attention!

The work was performed in the framework of FP7-SEC UNSETH project (Grant Agreement No. FP7-SECU-312701).

Motivation

Nanoparticle Inks/Pastes – Post-treatment and sintering

- Suspensions of metal particles in solvents and binders
- Pretreatment for dense layer and electrical conductivity:
 - Drying out solvents, burning out organic shells, sintering

Fig 5: Nanoparticle filled Ink, Drying out solvents, burning out organic shells, sintering

Sintering without pressure

• Particle necking due to diffusion effects

Experimental Setup

Sintering of Ag Nanoparticles and SEM investigation at different temperature steps

SEM Investigation - Sintering of Ag Nanoparticles and grain size at 60°C, 100°C, 200°C, 250°C, 300°C

Technologies

Concept & Process flow (schematic)

