

Character projection e-beam lithography for wafer level nano-fabrication

Uwe Hübner, Mario Ziegler, Thomas G. Mayerhöfer, Sophie Patze, Richard Knipper, Dana Cialla-May, Karina Weber, Juergen Popp

Outline

- Introduction \bullet
- The write time issue of the electron beam lithography ●
- Nanodevices on waferscale: E-beam lithography with Character Projection as enabler ۲
 - Write time benefit
 - Line with control and proximity correction
 - Flexibility ullet
- Summary ۲

Introduction

LEIBNIZ INSTITUTE of PHOTONIC TECHNOLOGY

The IPHT building on the Beutenberg Campus in Jena (Thuringia)

The main research fields of the Leibniz Institute of Photonic Technology (IPHT)

 \rightarrow Key function between photonis, life and environmental sciences as well as medicine

Key Figures: Employees: 330 Including Doctoral Candidates: 100 ... 44

Publications/Year : ca. 200
General Budget: ca. 21 Mio. €
Incl. Project Funding: ca. 11 Mio. €

The basic technologys of the Leibniz IPHT

٠

• Optical fiber technology

Micro- and nanotechnology

Optical fiber technology

Optical Fibres for Biophotonics

Material development and preform production

Fiber drawing

characterization

Fiber probe for medical diagnostics

Leibniz Associat

Ba

The cleanroom

The IPHT building on the Beutenberg Campus in Jena (Thuringia)

1 1

Leibniz **ipht**

The role of the microfabrication at the IPHT

- Plasmonic substrates for surface enhanced spectroscopy
- Microfluidic devices
- Micro optical devices, optical gratings and planar waveguides

- Radiation detectors (Bolometer, THz-imaging)
- IR-sensors
- SQUID-systems (ultrasensitive magnet field devices)

- Fiber and
- Fiber-endface patterning

Introduction

Plasmonic devices/metamaterials = subwavelenght pattern

- For basic research: Large number of different concepts and often with frequently changing layouts
- \rightarrow Need of flexible nanotechnology
- For routine use in our labs and for applications: Sufficient number of test objects, chips etc. for daily use
- → Need of wafer level fabrication (Large pattern areas with a few million nanostructures per mm²)

E-beam lithography

C High pattern resolution, flexible ⁽²⁾ Time-consuming **serial writing** method

The write time issue of the electron beam lithography

Write time issue of the electron beam lithography

High resolution ullet

- nm-size beam diameter
- Pattern dimension << 100 nm

• Time-consuming

Serial writing method: Writing time ~ "Shot number"

Gaussian point probe

(rectangular) Shaped beam

\rightarrow Shot number ~ Degree of the edge decomposition

Pattern-shape

Fracturing in rectangular shots

Write time issue of the electron beam lithography

Variable shaped beam with **Character-Projection (CP)**

Quasi-parallel Very fast

eibniz **ipht (**

E-beam lithography with Character Projection as enabler:

Nanodevices on wafer level

E-beam lithography: SB350OS with Character Projection (CP)

Courtesy of IOF Jena

Character aperture stage

- **Principle:** •
- Beam energy:

Vistec* SB350 OS

- **Resolution:** \bullet
- Wafer size: ullet
- Location: ۲

- Variable shaped beam,
- 50 keV,
- 65 nm node,
- up to 300 mm

Cleanroom IOF Jena, sharing IAP, IOF and IPHT

* Vistec Electron Beam GmbH Jena

Multi-stencil wafer with characters

Leibniz **ipht**

SB350 OS with CP: > 500 types of characters

A selection out of the > 500 types of characters (the pictures show realized structures)

U. Hübner et al., Proc. SPIE 9231, 30th EMLC, 92310E (2014)

Leibniz **ipht**

E-beam lithography with Character Projection as enabler:

Write time benefit

SB350 OS with CP: Write time benefit

6" NIL-master: 10 x 10 cm² 1d-grating lacksquare

150 mm Si Wafer with 10 x 10 cm² grating area (pitch 200 nm)

*estimated for a SEM with write unit, beam current 100pA, step size 10 nm, dose 400 μ C/cm²

12 h

71

Leibniz **ipht** (

SB350 OS with CP: Write time benefit

2d-Quartz-gratings as template for SERS-substrates ullet

Writing time

Gaußbeam-tool: SB350 in VSB-mo SB350 in CP-mod

4" Quartz-wafer with ~ 550 mm² nanogratings for SERS (2D-gratings, Pitch: 250 nm)

	86 days*
de:	60 h
e:	3 h

SB350 OS with CP: Write time benefit

• Gold-bowtie-gratings as template for SERS

4" (100 mm) Si wafer with 15 hexagonal Bowtie-gratings (each 1 x 1 cm², pitch 400 nm, lift-off-process, Gold on Si)

PHT LE

Writing time

Total grating area:

VSB-mode:

CP-mode:

15 cm² 17 days **3,3 h →** 4,5 cm²/h

E-beam lithography with Character Projection as enabler:

High quality – line with control and proximity correction

SB350 OS with CP: Line-width-control and proximity-correction

Electron dose based line-width control

The SEM-pictures show the line-width control by changing the exposure dose (negative resist).

Member of th

SB350 OS with CP: Line-width-control and proximity-correction

All patterns which are included in the hard coded character will get the same electron dose.

Short range dose correction •

 \rightarrow Geometrical pre-corrected character layouts

Character layout

Lifted gold dots

SB350 OS with CP: Line-width-control and proximity-correction

All patterns which are included in the hard coded character will get the same electron dose.

E-beam lithography with Character Projection as enabler:

High flexibility: Combination of VSB- and CP-mode Mix of different technologies

150 mm Si Wafer with 23 cm² grating area (pitch 200 nm)

*calculated

20 days * SB350 in VSB-mode: SB350 in CP-mode: 5 h

Leibniz **ipht**

SB350 OS with CP: Combination with MEMS-technology

71

Summary

- **CP + VSB e-beam technology**
 - \rightarrow Strong reduction of writing time
 - → Top-down **nanofabrication on wafer level**
- **Combination** of waferscale nanopatterning with MEMS methods \rightarrow Great potential by mixing different technologies

Open for cooperation

Acknowledgement

IPHT: Cleanroom-team IOF: U. D. Zeitner Vistec: M. Banasch

Burkhard Illustrations:

Financial support: Federal Ministry of Education and Research, Germany (BMBF), State of Thuringia and EU (EFRE)

SEFÖRDERT VOM

Bundesministeriu für Bildung und Forschung

Leibniz **ipht**