Printing of Electrical Functional structures using additive technologies

Frank Roscher, Tobias Seifert, Nooshin Saeidi, Tom Enderlein, Franz Selbmann, Ralf Zichner, Enrico Sowade, Mario Baum and Maik Wiemer

Chemnitzer Seminar "System integration Technologies" 2016

Outline

- 1. Technologies / Materials / Process Flow
 - 1. Aerosol-Jet-Deposition & Screen Printing
 - 2. Paste formulation for screen printing and application example
- 2. Selected R&D topics
- 3. Further Application examples
- 4. Further printing capabilities

Aerosol-Jet-Printing Deposition Technology for Nanoparticle inks

Equipment @ ENAS

- Customized Optomec AJ300 System
- 300 x 300 mm x-y-Vacuum stage
- Print Speed: max. 200 mm/s
- <u>2 Atomizer systems:</u>
 - 2 x Pneumatic Atomizer incl. Mixing option
 - [1cP 1000cP]
 - Ultrasonic Atomizer
 - [1cP 5cP, from 1ml Fluid]
- 200°C Substrate heater
- Min. line width 10 μm to 20 μm
- Laser-Curing-System included [IR Laser, 700mW, 830nm] and material mixing option

Fig 1: Aerosol-Jet 300 System @ Fraunhofer ENAS

Aerosol-Jet-Printing General Work Flow

Fig 2: General Workflow overview

A & B: Producing Aerosol by A: Ultrasonic or B: Pneumatic Atomizer Systeme

C: Focusing Material Beam in printhead and direct maskless deposition on substrate

Aerosol-Jet-Printing General Work Flow

Height above Substrate (mm)

Fig 3: Focused material beam over several millimeters enables deposition on 3D substrates without moving z-axes, diagram shows constant line width between 1mm to 3mm distance between printhead and substrate [Source: Optomec]

Fig 4: Examples for Ag deposition on 3D surfaces [deep etched cavities in Si Wafers]

Screen Printing General Work Flow

- Screen mask works as stencil
- Mesh made from polymers or metalls
- Screen openings represent printable pattern
- Squeege transfers paste through screen openings onto substrate

Screen Printing Equipment

Reprint R29 Spectrum

- Screen frame: 736 x 736 mm (29"x 29") to 736 x 812 mm (29" x 32")
- Camera alignment
- Fully automated vision system
- Registration +/- 10 µm

DEK Horizon 03iX

- Screen frame: 736 x 736mm (29" x 29") standard
- Printable Area (510mm x 508.5mm)
- Modul for Via Filling
- Modul for Dispensing
- Vector Guard stencil printing
- Machine Alignment >2 Cpk @ +/- 12.5µm, 6 Sigma
- Process Alignment >2 Cpk @ +/- 25µm, 6 Sigma #

Morphology: Lateral 50 µm - 150 mm; Vertical 10 µm - 1 mm

Metal Nanoparticle Inks Overview Sintering Process

Nanoparticle Inks – Post-treatment and sintering

- Suspensions of metal particles in solvents
- Pretreatment for dense layer and electrical conductivity:
 - Drying out solvents, burning out organic shells, sintering

Fig 3: Nanoparticle filled Ink, Drying out solvents, burning out organic shells, sintering

Sintering without pressure

• Particle necking due to diffusion effects

Experimental Setup

Sintering of Ag Nanoparticles and SEM investigation at different temperature steps

Fig 5: SEM Investigation - Sintering of Ag Nanoparticles and grain size at 60°C, 100°C, 200°C, 250°C, 300°C

TECHNISCHE UNIVERSITÄT CHEMNITZ

Paste formulation for Screenprinting

Paste Particle characterization

Paste manufacturing and characterization

Application test magnetic pastes

Paste formulation for Screen printing

SEM image of NdFeB particles

Using magnetic paste for screen printing a MEMS speaker (electromagnetic actuation) was demonstrated

CHEMNITZ

Mikrotechnologien

Metallic glass membrane

Magnetic paste

1. Printed RDLs for polymer substrates

Concept

Printing conductive fine pitch multilayers for a variety of substrates materials enable smart systems

Needed:

•Fine pitch, 3D ready deposition process for conductive materials

•Conformal dielectric coating technology for 3D substrates

•Process for via fabrication to enable multilayers

Low temperature processes < 150°C to enable the usage of sensitive / polymer / low cost substrates

1. Printed RDLs for polymer substrates

Motivation for Parylene:

- Deposition at ambient temperatures (no thermal stresses)
- Pinhole-free at d > 0,2µm
- Uniform layer thickness, in particular at edges, excellent gap penetration
- No solvent or catalyst required
- Yield of 100% monomer above 550°C in vacuum (using [2,2]p-cyclophane)
- No by-products
- Batch process for high throughput
- Bio compatible medicine products

Plasma Parylene LC 300 RW (Plasma Parylene Systems – PPS)

Parylene = Poly(p-xylylene)

Gorham Process

- 3 step deposition
- Polymerization @ Roomtemperature (condensation)

1. Printed RDLs for polymer substrates

Parylene Properties

- Conformal coating on Waferlevel < 10% thickness variation developed
- Conformal coating for high aspect ratio patterns
- Highly transparent
- Ar plasma pretreatment enables printing process
- Good moisture barrier

Properties of Parylene C	
Melting point	290°C
Temperature stability	125°C
Peak Temperature	200°C
Water absorption in 24h	0,06%

1. Printed RDLs for polymer substrates

1. Printed RDLs for polymer substrates

1. Printed RDLs for polymer substrates

Laser Ablation of Parylene on top of printed Ag

TECHNISCHE UNIVERSITÄT

CHEMNITZ

FIB Cross Section

FIB Cross Section Investigation

- Conformal Parylene Coating
- No Ag ablation visible
- Sidewall effects of laser ablation visible
- → Parylene thickness increasing
- → Some defects near Parylene sidewall visible

1. Printed RDLs for polymer substrates

Via Results

2nd layer Ag printing to fill vias, sintering

+

Electrical Testing

- Via resistance [50µmx200µm] < 10 Ω after fabrication
- Thermal cycling (-55/125°C,30min) performed

 \rightarrow After >300cycles resistance is stable with around 5 Ω / Interconnect due to additional sintering

1. Low temperature Wafer level Bonding using metal nanoparticles

Si Wafer with Au adhesion promoter and printed Ag Bondframes

schematic process flow

1. Low temperature Wafer level Bonding using metal nanoparticles

FIB&SEM investigations at the Interface Au-Ag-Au, 250°C: Ag layer is fully wetting the Au adhesion promoter, porous interface

FIB&SEM investigations at the Interface Au-Ag-Au, 250°C: Ag layer is fully wetting the Au adhesion promoter, pore size increasing, diffusion Au – Ag visible using EDX

Conclusion for all bonds (for all temperatures 350°C to 200°C and Au / Cu adhesion layer) today→ hermetic sealing using Ag Nanoparticle intermediate layer not possible but mechanical bond is succesful

Reasons: porous interface and inhomogeneous thickness of Bondframe due to printing process at start and endpoint of printed microstructures

1. Low temperature Wafer level Bonding using metal nanoparticles

Analogue process was developed for screen printing technology using Au Nanoparticles:

CHEMNITZ

- Applied bond pressure 6.5kN
- Bonding Temperature 200°C ٠
- → High densification within the Bondframe
- \rightarrow 100% yield after dicing
- \rightarrow Hermeticity evaluations ongoing

4. Further Application Scenarios

using 3D suitable deposition technology for Nanoparticle Inks

Printed Sensors (Au Nanoparticles) on low cost substrates

High density 3D MID Substrates by additive manufacturing

Printed Interconnects for stacked components

Ovic

Silber Nanopartikel

Flexible Electronics

Joining (WLB and CLP) using Nanoparticle intermediate layers – low sintering temperature enables Bonding < 250°C

CHEMNITZ

Au

Ovic

4. Further printing capabilities

upscaling and R2R manufacturing (i.e. printed RFID Antennas)

© Fraunhofer ENAS

4. Further printing capabilities

institute for print and media technologies TUC

...this is what we do: Printing beyond color – printed functionalities

Printed antennas – planar and 3D Printed batteries Printed

Printed sensors

Printed transistors

[a) Hammerschmidt et al., Langmuir 28, 2012; b) Belgardt et al., Phys. Chem. Chem. Phys. 15, 2013; c) Sowade et al., Adv. Eng. Mat. 14, 2012; Sowade et al., Cryst. Growth Des. 16, 2016; d) Zichner et al., Jpn. J. Appl. Phys. 53, 2014; Kang et al., Appl. Mater. Interfaces 6, 2014; Sowade et al., J. Mater. Chem. C. 3, 2015; d) Marjanovic et al., J. Mater. Chem. 21, 2011; e) Lorwongtragool et al., Sensors 14, 2014; Dinh et al., Carbon 96, 2016; f) Castro et al., Journal of Electronic Materials 7, 2014; g) Sowade et al., Organic Electronics 30, 2016]

© Fraunhofer ENAS

Thank you for the kind attention

Contact:

Frank Roscher Frank.Roscher@enas.fraunhofer.de

Fraunhofer ENAS Department System Packaging Technologie Campus 3 09126 Chemnitz Germany We would be pleased to cooperate with you in European or German national projects as well as direct cooperation and technology transfer

Service offers:

- Paste/Ink formulation screen printing and Aerosol-Jet
- Testing of inks/pastes (printability, electricaly, reliability, adhesion,..)
- Design and feasibility studies
- Workshops and training to enable technology transfer

