

Implantable Pressure Sensors

25th Chemnitzer Seminar, 14 June 2016

Dr Reza Bahmanyar Institute of Biomedical Engineering

Funding: Wellcome Trust and Department of Health

Imperial College London

Project No 1: Permanently Implantable Cardiovacular SAW pressure sensors

Team:

Principal Investigator:Prof. Chris McLeodCo investigator:Dr Reza BahmanyarClinical Co Investigator:Prof. Sir Magdi YacoubInterventionist:Dr. Iqbal MalikResearch Associate:Dr Longfang Zou

Current State:

- 12 years since conception.
- The implant system is successfully tested in porcine model.
- Chronic animal studies under way.
- Optimisation is currently being done for first in man (phase 1 clinical studies) planned to start in 2018.

Imperial College London

Project No 2: Intraocular Wireless Pressure Sensor for Glaucoma Patients

Team:

Principal Investigator:Dr Reza BahmanyarCo investigator:Prof. Chris McLeodClinical Co Investigator:Prof. Francesca Cordeiro

Current State:

- 3 years young!
- Proof of concept is done.
- Prototypes fabricated and tested.
- Patent filing discussions started.
- Preparing the case for funding to complete the implant system and perform animal studies.

The Cardiovascular Sensor

Progression and Treatment of Heart Failure (1)

With potential side effects

Progression and Treatment of Heart Failure (2)

With potential side effects

Pathway of Blood Through the Heart and Lungs

Heart failure (CHF)

Left side fails => pulmonary congestion and suffocation <u>Right</u> side fails => peripheral congestion and edema

Safety

Clotting in PA => embolism in lung section Clotting on left side could cause a heart attack or a stroke

Systemic arterial pressure can be measured non-invasively.

Cardiovascular SAW Pressure Sensor

Aim: To measure blood pressure inside right atrium (RA) or pulmonary artery(PA) wirelessly using Surface Acoustic Wave (SAW) transponders.

- Develop an Implantable pressure sensor using SAW Resonators.
- Deliver and implant the sensor (inside right atrium or pulmonary artery).
- Read the sensor pressure wirelessly (measure its resonant frequency accurately).

SAW Resonators

Pressure Sensors

SAW Interrogating System

Sensors in development (see also Chronicle & Heartpod)

	Description	Size	State of development
St Jude Medical	Low-frequency MEMS pressure sensor (35-45 MHz)	3mm x 15mm	Clinical trials, PA for Heart Failure. CHAMPION trial
Boston Scientific	Acoustic Pressure sensor – 5s / 30s or continuous with implanted battery		Taken over by Boston Scientific; no trials yet in public; mothballed 2013.
Imperial College London	High Frequency 868 MHz SAW pressure sensor	3mm x 7mm	Early animal testing – PAP, LAP and LVP.
ISS Systems	Magnetically coupled MEMS sensor		Under development for Intra-Cranial Pressure, Left Atrial Pressure
Wireless health monitoring	MEMS pressure sensor		Early animal testing- PAP

IMF-Fraunhofer Osypka. (Note internal lead)

CardioMems' CHAMPION trial

Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial

William T Abraham, Philip B Adamson, Robert C Bourge, Mark F Aaron, Maria Rosa Costanzo, Lynne W Stevenson, Warren Striddand, Suresh Neelagaru, Nirav Raval, Steven Krueger, Stanislav Weiner, David Shavelle, Bradley Jeffries, Jay S Yadav, for the CHAMPION Trial Study Group*

Lancet 2011; 377: 658-66

Published Online February 10, 2011 DOI:10.1016/S0140-6736(11)60101-3

Figure 1: Implantable haemodynamic monitoring system

(A) CardioMEMS sensor or transmitter. (B) Transcatheter is implanted into a distal branch of the descending pulmonary artery. (C) Patient is instructed to take daily pressure readings from home using the home electronics. (D) information transmitted from the monitoring system to the database is immediately available to the investigators for review. (E) Transmitted information consists of pressure trend information and individual pulmonary artery pressure waveforms.

CardioMems device and trial

CHAMPION trial reported Eur Soc Cardiology HF Congress 2010 and Lancet article (Vol 377, Feb 19th 2011, pp 658-666) **Relative risk reduction (%)**

PA-pressure sensor	Standard management (n=280)	
HF re-hospitalization	31	44
Re-hospitalization (annualized rate)	45	73

FDA approved and CE marked.

Compare with:

- Tele-HF trial, reported 2010 *New England J Med*. No effect from patient reporting using Telemedicine
- TIM-HF trial, reported 2010 Am Heart Assoc. No effect from patient reporting using Telemedicine

Potential improvements:

- More frequent measurement to capture spiking, response to physical activity
- Alarm
- Verification of data
- Procedure-free usage

Wireless communication & signal generation. Imperial College

to NHS

server;

service

design.

Features of SAW sensors relevant to implantation

- Wireless, range in air c.3 metres, but only cms in tissue
- High Q, (10000 at 400MHz, 4000 at 1 GHz) =>Network of sensors
- Zero power and no limit on lifetime.
- Independently sensitive to temperature and pressure.
- Easily scalable pressure range set by membrane thickness.
- Temperature sensitivity- from insensitive to $\pm 0.1^{o}\text{C}$ over part of 25°C to 45°C range
- Inert materials, quartz platinum/gold and nitinol. Aluminium can be encapsulated.
- Excellent long-term stability design target 10 years minimum ±1mmHg/yr for pressure.
- Small size temperature 1mm x 1mm,

pressure 3mm x 7mm

Physical design of the sensor

- Width constraint 3mm for endovascular access and deployment
- Low-profile form to avoid disturbing flow ~1mm
- Longitudinal (dipole) aerial compatible with deployment site
- Pressure ranges 0-50 mmHg (~7kPa) or 0-250mmHg (~33kPa)
- At 434 MHz, $\lambda_t = 9$ cm; at 868 MHz, $\lambda_t = 4.5$ cm ($\lambda_t = t$ issue wavelength)
- At 434 MHz, λ_{saw} = 7.2 μ m; at 868 MHz, λ_{saw} = 3.6 μ m
- Q α 1/f
- Local reference pressure
- SAW surface cannot be mass loaded
- ⇒ 3mm x 3mm diaphragm, bonded to quartz carrier, forming cavity SAW resonator on inside surface of the cavity Sensor diaphragm thinned to < 50µm.
 868 MHz
 Additional, pressure-insensitive (REF) SAW resonator

Reader design

- 33dBm excitation pulse, shaped.
- Better than -80dBm sensitivity
- Fully programmable sampling
- On-board freq estimation <1kHz
- On-board storage for (RF samples) measured freq
- On-board atmospheric pressure measurement
- On-board movement and posture detection
- Industry-standard USB and wireless BLE links
- Battery powered for >1 week exchange interval
- Integral or cabled external aerial
- mHealth system compatible using smartphone etc
- =→ 11cms x 7cms x 1.4cm board.

Results

- Sensor 4cms deep in tissue phantom
- 30dBm excitation pulse
- 12-bit ADC range
- 1200-1300 usable sample points
- Frequency resolved to c.3 kHz
- Increase S/N by averaging
- Real-time processing
- Independent measurement of REF

In-vivo experiments

Placement of wired device into the left ventricle of the heart. Simultaneous measurements with SAW device and conventional catheter.

SAW sensor (blue) compared to catheter tip pressure (red)

Copyright Imperial College London 2010

Implanted sensor, complete with aerial and retaining stent. March 2011 version

Acutely implanted sensor in LV; simultaneous Catheter measurement

Wireless Measurement in Pig Pulmonary Artery

Competent Authority, MHRA(UK) or FDA(US)

- "An assessment of toxicological risks is necessary for the assurance of biological safety. (Other biological risks, such as microbial contamination, are excluded from this type of assessment.) It is evident from Annex VIII of the Medical Devices Directive that a biological safety evaluation needs to be carried out <u>before</u> any clinical investigation is commenced. "
- "The main safety aim is that the device will not compromise the clinical condition or safety of the patient or user or other persons, << provided that any risks which may be associated with their use constitute <u>acceptable</u> risks when weighed against the benefits to the patient...>>.

"GUIDANCE ON THE BIOLOGICAL SAFETY ASSESSMENT" MHRA bulletin n. 5, February 2011

Phased clinical trials

- Phase 1 Safety. First do in animals all that can be done. Small number (10-20) patients; leads to CE mark.
- Phase 2 Efficacy. Show that it works without adverse incidents. Choose trial endpoints and power of study.
- Phase 3 Show patient benefit.

PA tissue exposed for analysis

The Glaucoma Sensor

Glaucoma and IOP

- Glaucoma is a medical Condition of Sustained Raised Intraocular Pressure (IOP)
- IOP results in gradual and accumulative damage to the optic nerve tissue, in the posterior segment of the eye.
- Retinal Ganglion Cell Death and Enlarged Optic Disc Cupping
- Visual Field Loss, Blindness

Imperial College

London

EXTREME GLAUCOMA

EARLY GLAUCOMA

ADVANCED GLAUCOMA

NORMAL VISION

Healthy Optic Nerve

Optic Nerve in Eye with Glaucoma

Ciliary Body and Intraocular Fluid

- Ciliary Body secretes aqueous fluid in the eye
- Intraocular aqueous fluid flows into the Anterior Chamber
- Aqueous fluid supplies nutrients
- Trabecular Meshwork drains the fluid out of the eye
- Normal Intraocular Pressure – 12-21mmHg

Source: Katzung BG, Masters SB, Trevor AJ: Basic & Clinical Pharmacology, 11th Edition: http://www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Imperial College London

Types of Glaucoma

- Open Angle Glaucoma
 (Left) Commonest
 - Trabecular Meshwork Dysfunction
- Closed Angle Glaucoma
 - can be acute or chronic
 - Increased pressure pushing the iris/lens complex forwards, blocking the trabecular meshwork – vicious cycle

Glaucoma – Clinical Need

• Leading cause of irreversible blindness - 15% of world blindness

Imperial College

London

- Strongly age-related
- Significant cause of disability UK lifetime costs > age 65 £41,652
- Late diagnosis lack of screening test

IOP

- IOP major modifiable risk factor
- All treatment aimed at lowering IOP
- Gold standard for IOP measurement is Goldmann Applanation
- •1mmHg reduction reduces progression by 10%
- •1mmHg elevation increases risk of progression

from baseline 10% - 12%

at follow-up 12% – 19%

Imperial College London Problems with Current IOP Measurements

- Snap shot IOP
- Physiological and positional variation
- Indirect measure for continuous monitoring: Not reliable

Proposed IOP Measuring Implant

- •A small battery-less and wireless sensor
- •Can be delivered through a 22-gauge needle into the eye in a clinical outpatient setting
- •Can be interrogated wirelessly by an RF reader.
- •Can be paired to telehealth system via a wireless link.

Cardiovascular Sensor is too big for the eye!

- Due to size constraints, sensors should operate at GHz frequencies.
- Conventional pressure sensors based on SAW technology are large for the eye.
- Not efficient in GHz frequencies.

Resonators on quartz wafer

Pressure sensor assembly

Imperial College London

Film Bulk Acoustic Wave Resonators (FBARs)

Particle motion Wave propagation

Rayleigh Wave

Bulk Wave (longitudinal)

FBAR Fabrication (at LCN)

Moral of the Story

Measuring physical (e.g. pressure) and biochemical (e.g. glucose concentration) quantities inside the human body can assist in managing relevant medical conditions and assessing the efficiency of treatments. This requires biocompatible miniature implants of high longevity that can be interrogated wirelessly. Producing such devices is challenging and demands creative use of existing, and developing novel technologies to achieve:

- Miniaturisation without compromising the functionality.
- •Increasing the longevity without compromising safety and biocompatibility.
- No cross-interference with other wireless systems.

Thanks for you attention

Questions?