Vertically-Integrated Array-Type Miniature Interferometer as a Core Optical Component of a Coherence Tomography System for Tissue Inspection

<u>Wei-Shan Wang</u>^a, Maik Wiemer^{*a}, Joerg Froemel^a, Tom Enderlein^a, Thomas Gessner ^a, Justine Lullin^b, Sylwester Bargiel^b, Nicolas Passilly^b, Jorge Albero^b, Christophe Gorecki^b

^aFraunhofer Institute for Electronic Nanosystems, Germany ^aDepartment of MN2S, Institut FEMTO-ST, France

Outline

Introduction

- Mirau Interferometer
- Design Concepts of Electrical Connection
- Bonding Technology and the assembled Mirau μ-interferometer
- Conclusion

Optical coherence tomography in dermatology

- Skin cancer is the most commonly diagonosed type of cancer
- Early diagnosis is essential
- •However, a large number of unnecessary surgical procedures are still performed
- •There is a need for high resolution non invasive techniques.

Ultrasounds

- frequency range 20-75µHz
- cross-sectional field of view +12x6mm2
- Low resolution

Confocal microscopy

- very high resolution (1µm)
- limited penetration depth (<200µm)

Optical Coherence Tomography (OCT)

an intermediate method between highfrequency ultrasound and confocal microscopy, regarding resolution and detection depth

Vertically Integrated Array-type Mirau-based OCT System for early diagnostics of skin cancer (VIAMOS)

Originalities

- •an instrument 150 x smaller than a standard OCT system
- 10 x cheaper because of a batchfabrication concept
- •multi-functional instrument (polarisation sensitive, parallel inspection)
- high resolution 3D reconstructions of skin

Challenges

•To combine MEMS and microoptical technologies in a free-space platform

- A proposed 3D packaging and assembly approach to miniaturize the OCT system
- Low-cost preindustrial prototype of array-type OCT microsystems
- •Functional validation at the Hospital and acceptation by the market

Mirau µ-interferometer

Mirau μ -interferometer: a key component of OCT microsystem which aims to image a total scan area of 8x8x0.5 mm³

Requirement of Mirau interferometer - large actuated platform (4x4)

- •Doublet of microlenses (W1) less optical aberrations, lower sensitivity to alignment
- •MOEMS Z scanner (W2) electrostatic actuation of micro-mirrors
- •Spacer (W3) 3mm thick for focus-adjustment
- •Beamsplitter (W4) with AR coatings

Mirau µ-interferometer

Mirau μ -interferometer: a key component of OCT microsystem which aims to image a total scan area of 8x8x0.5 mm³

Requirement of Mirau interferometer - large actuated platform (4x4)

- •Doublet of microlenses (W1)
- •MOEMS Z scanner (W2)
- •Spacer (W3)
- •Beamsplitter (W4)

Vertical Assembly +

Electrical Connection

MEMS/MOEMS Packaging

- •Material and process compatibility to ensure reliable device operation
- In most cases, hermetic is needed to avoid contamination and moisture
- Electrical interconnection
- Size and cost reduction

Integration on Wafer Level Required

Bonding	Temperature	Drawbacks
Direct	~1000°C	High surface requirement
Surface activated	< 200°C	Plasma effect on devices
Au-Sn eutectic	~300°C	Intermediate material
Anodic	<500°C	High surface requirement
Glass frit	<450°C	Need larger area for bond frame

Packaging of Micro-Mirror devices

•Gla Si e •No on

•Glass frit at the cap side, Au-Si eutectic at the bottom side.

•No bond frame preparation on MEMS wafer necessary

- •Anodic bonding for top cavity wafer and spacer
- •Glass frit between device wafer , spacer and bottom cavity wafer (420°C)

Lisec etal., 2010, FhG ISIT

Bonding Requirement

Optical transparancy for the package

Ensure stability of microlens profile

Quality of deposition layer on MOEMS Z scanner

Quality of AR coating

Alignment - lateral tolerance of +/- 16 μ m, vertical tolerance of +/- 20 μ m

Bonding process should provide high bonding strength.

Concepts of electrical connections

- + Secured approach
- Openings on W1 and W2
- Additional metallization on W3
- More space needed

- + Secured approach
- + No additional metallization on W3
- + higher miniaturization possible
- Step structured on W3 and W4
- Fragile spacer on wafer level
- Mechanical fixing

- + Mechanical/electrical through bumps
- + No additional metallization on W3
- + higher miniaturization possible
- + Stronger spacer
- Step structured on W3 and W4
- More complicated PCB

Demonstrator I simulating a Mirau Stack

Interface	bonding step	Alignme nt
Interface A1	W1	+/- 8µm
Interface B	W2+W3	+/- 8µm
Interface C	W1 + W2/W3	+/- 16µm
Interface D	W1/W2/W3 + W4	+/- 16µm
Summary	All anodic bonding	

Demonstrator II including a mocrolense wafer

To decrease bonding times of W2 as well as bonding temperature

Interface	bonding step	remarks
А	Si frame+glass wafer	Self-aligning
D	W3+W4	W3 with DI rinse, W4 with RCA cleaning before bonding
С	W2+ (W3/W4)	W2 with plasma treatment (selective)
В	W1+(W2/W3/W4)	

All anodic bonding

Demonstrator II : bond interfaces

Interface A Si-Glass lense Interface B

Bonding temperature: 320°C; Voltage: 500V, 600V Scanning Acoustic Microscope pictures

Interface C (W3-W2)

InterfaceD (W4-W3)

Demonstrator II: SEM images of bonded chips

© Fraunhofer ENAS

COOPERATION

SCIENCES & TECHNOLOGIES

Assembly of Mirau µ-interferometer

N-bonding process of a Mirau Stack at chip level

Interface	bonding step	bonding parameters		
A0, A, A1	lense+lense	350°C.900V		
D	W3+W4	360°C, 400V (W4 chipwithout TiO2 layer)		
С	W2+ (W3/W4)	360°C, 2000V		
В	W1+(W2/W3/W4)	360°C, 2000V		
All anodic bonding				

front side

COOPERATION

back side Infrared camera

N-bonding process of a Mirau Stack at wafer level

After bonding at 1000V

After bonding at 1100V

After bonding at 1100V: Increased bonded area (dark areas) but not significant

Laser dicing approach to get Mirau chips

Assembled Mirau µ-interferometer

Bonded Mirau stack

Diced chips mounted on PCB

Proc. of SPIE, vol. 9890, 989011 (2016)

Vertical integration of array-type miniature interferometers at wafer level by using multi-stack anodic bonding

WeskBan Wangi, Mait Worzen²⁴, Josep Frensoff, Tom Enderbeit, Thamas Gesonel²⁶, Jarine Ludia⁴, Sylvester Bangal, Nicolas ParoByl, Jarga Albrit, and Christophe Goroda⁷ Transhofts Institute for Electronic Neuropytems. Technologie Compo. 7, 0126 Chemitz, Gennany, Technicke Universitä (Chemitä, 6907) Chemitä, Gennany, TEMIO-ST Isofane, 158, Aroma edi Musifonson, F-2000 Beanque, Tranze

ABSTRACT

Conclusions

- A suitable design and technology have been demonstrated in order to vertically integrate optically functionalized wafers
- Demonstrators and Mirau interferometers have been successfully bonded both at chip level and at wafer level.
- Design of electrical connections for the Mirau interferometer which provides a simple, cost-effective process is proposed and realized.
- Mirau µ-interferometers are successfully assembled and fully characterized.
- The assembled Mirau µ-interferometers can be further integrated with other components of an OCT microsystem.

Acknowledgement

This work is supported by the collaborative project VIAMOS of the European

Commission (FP7-ICT-2011-8, Grant no.318542).

The authors would also like to thank the involved partners

Thank you for your attention

Contact

Wei-Shan Wang

Fraunhofer ENAS Department System Packaging

wei-shan.wang@enas.fraunhofer.de

0049 (0) 371-45001-495

Technologie-Campus-3 09126 Chemnitz Germany

