Towards MEMS loudspeaker fabrication by using metallic glass thin films

Felix Gabler, Klaus Vogel, Wei-Shan Wang, Tobias Seifert, Frank Roscher, Robert Schulze, Maik Wiemer Fraunhofer Institute for Electronic Nano Systems ENAS

Outline

MEMS market for mobile devices

Introducing metallic glass as novel material for MEMS

Fabrication of a MEMS loudspeaker technology demonstrator

- Manufacturing of metallic glass membranes
- MEMS-compatible integration of magnetic material
- Waferbonding to micro coil wafer

Summary and outlook

MEMS market for mobile devices

- Continuous growth of MEMS market over 20 years
- Market of mobile devices as one of today's key drivers
- MEMS enable key functionalities

2010 2011 2012 2013 2014 2015 2016 2017 2018

Cell Phone Tablet

MEMS market for mobile devices

New MEMS apps are about to come...

TODAY's smartphone board

2020

MEMS market for mobile devices

- Market for mobile devices demands more than one billion microspeakers per year and is still growing
- Today's microspeakers are miniaturized versions of classic electrodynamic speakers consisting of:
 - Polymer membrane with attached coil
 - Permanent magnet
 - Housing
 - Not compatible with reflow soldering
- What is crucial for an electrodynamic MEMS-based microspeaker?
 - Elastic, temperature stable membrane
 - Integration of magnet

$$P_{acoustic} \propto d^4 f^4$$

- d Membrane diameter
- x Membrane deflection
- f Frequency

 x^2

Introduction to metallic glass

Metallic alloy with disordered (amorphous) atomic structure like glass

- Properties:
- No grain boundaries, crystal defects
- Large elastic limit
- High strength, corrosion resistance
- Fatigue-free, isotropic
- Supercooled liquid region
- Depending on composition: electrical conductivity, magnetism

Introduction to metallic glass

Critical cooling rate R_c is determined by atomic composition (singleelement metals do always crystallize, large differences in atomic sizes lead to low R_c)

Introduction to metallic glass

Sputtering using Pd-based alloy target
Thickness of deposited films: 100 nm ... 3 µm

	Pd-based Thin film metallic glass	Polysilicon
Young's Modulus	6070 GPa	170 GPa
Elastic limit	2.0 %	0.7 %
Micro structure	Amorphous	Polycrystalline
Material fatigue	No	Yes
State	R&D	Standard

Manufacturing of metallic glass membranes

Technology routine:

MEMS-compatible integration of magnetic material

- Epoxy-based paste with 70 wt% NdFeB particles
- Particle size around 10 µm
- Screen printing / dispensing at wafer-level
- On substrates or membranes applicable

MEMS-compatible integration of magnetic material

Screen printing

Dispensing

Fraunhofer **ENAS**

Scan Length (µm)

MEMS-compatible integration of magnetic material

- Magnetization of screen printed paste in strong magnetic field (~7 T)
- Recording hysteresis loop with SQUID
- Remanence of 0.35 T comparable to class Y35 ferrite magnets

2 mm 20 μm NdFeB paste 525 μm silicon

Waferbonding to micro coil wafer

Technology routine of coil wafer:

Waferbonding to micro coil wafer

Assembly of membrane wafer (with dispensed magnets) and micro coil wafer by SU8 waferbonding at 150°C

Summary and outlook

- More MEMS apps are expected in mobile devices during the next years
- New technologies available at Fraunhofer ENAS:
 - Sputter deposition of thin-film metallic glasses
 - MEMS-compatible integration of magnetic material by screen printing and dispensing
- Metallic glass is promising wherever large elastic deformations are needed in MEMS (especially in case of many cycles)
- Integrated magnetic material can be used to fabricate MEMS-based electrodynamic actuators/sensors
- Outlook: redesign of MEMS loudspeaker, replace Poly-Si membrane in MEMS microphones with metallic glass, ... → project partners are highly welcome

Thank you for your kind attention!

Contact

Dipl.-Ing. Felix Gabler Fraunhofer ENAS Department System Packaging

Mail: felix.gabler@enas.fraunhofer.de Phone: +49 371 45001-259

Technologie-Campus 3 09126 Chemnitz Germany

