## THALES

# Thales vision & needs in advanced packaging for high end applications

M. Brizoux, A. Lecavelier
Thales Global Services / Group Industry

Chemnitzer Seminar – June 23<sup>th</sup>-24<sup>th</sup>, 2015 Fraunhofer ENAS - Packaging



#### Introduction

- > Thales products & mission profiles
- Packaging trends driven by mobility / IoT

#### Advanced packaging needs & vision for high end applications

- > Supply chain & value chain evolutions
- > Technology needs & forecasted roadmap
- > Reliability assessment toolbox

#### **Conclusions**



## Thales products & mission profiles

#### Main product characteristics

- Low volume (10-10k pcs/year)
  - Heterogeneous
  - Complex
  - Dense
  - Advanced technology as key differentiator

boards

- Reparability
- Reliability
  - Long mission profile
  - Harsh environment

#### Constraints

- > Dependency of civil market: dual technologies
  - Need to launch manufacturing spread over long period → Management of obsolescence
  - Sourcing (PCB, EMS ...): New technologies, specific processes & Export control

worldwide









**Payloads** for telecom satellites

Air Traffic Management

Sonars

Security for interbank transactions

N°2 worldwide







Rail signalling systems

In-flight entertainment and connectivity

Military tactical radiocommunications

N°3 worldwide







Civil satellites

Military surface radars



## Thales products & mission profiles

#### Reliability in harsh environment & long mission profiles

- > Up to 35 years operation
- > Harsh thermo-mechanical environment
- > Harsh mechanical environment
  - Mechanical shocks & vibrations

Constraints far from consumer electronic

| Use Category |                                            | Typical<br>years<br>of<br>Service | Accepted<br>Cumulated<br>Failure<br>within<br>Lifetime | Tmin<br>[°C] | Tmax<br>[°C]                            | Delta T [°C]       | Mechanical<br>Shock and<br>High Vibratior<br>Level | Repair<br>Needs | Typical<br>Volume<br>per<br>Product<br>Batch |
|--------------|--------------------------------------------|-----------------------------------|--------------------------------------------------------|--------------|-----------------------------------------|--------------------|----------------------------------------------------|-----------------|----------------------------------------------|
|              | Space (leo / geo)                          | 5 to 30                           | 0.001%                                                 | -55          | 95                                      | 3 / 100            | Yes                                                | Yes<br>(rework) | 3                                            |
| Milit        | ary Avionics (a / b / c)                   | 10                                | 0.01%                                                  | -55          | 95                                      | 40 / 60 / 80       | Yes                                                | Yes             | 10                                           |
| Co           | ommercial Avionics                         | 20                                | 0.001%                                                 | -55          | 95                                      | 20                 | Yes                                                | Yes             | 200                                          |
| Mili         | itary Ground & Ship                        | 10                                | 0.1%                                                   | -55          | 95                                      | 40 (+60)           | Yes                                                | Yes             | 50                                           |
|              | Telecom                                    | 7 to 20                           | 0.01%                                                  | -40          | 85                                      | 35                 | Yes                                                | Yes<br>(rework) | 1000                                         |
| Auto         | omotive under Hood                         | 5                                 | 0.1%                                                   | -55          | 125                                     | 60<br>(+100;+140)  | Yes                                                | No              | 100 000                                      |
|              | ustrial & Automotive<br>senger Compartment | 10                                | 0.1%                                                   | -55          | 95                                      | 20<br>(+40;+60;+80 | Yes                                                | No              | 100 000                                      |
|              | Computers                                  | 5                                 | 0.1%                                                   | 15           | 60                                      | 20                 | No                                                 | No              | 100 000                                      |
|              | Consumer                                   | 1 to 3                            | 1.0%                                                   | 0            | 60                                      | 35                 | No                                                 | No              | 1 000 000                                    |
|              | Classification based<br>on IPC-SM-785      |                                   | deliability rements                                    | m            | Harsh Thermo<br>mechanica<br>Environmen |                    | cal Mechanical                                     |                 | Low<br>Volume                                |
|              | OPEN                                       |                                   |                                                        |              |                                         |                    | TH                                                 | ΔI              | FS                                           |

## Packaging trend driven by Mobility / IoT

#### Heterogeneity & density

« More Than Moore » → Diversification Biochips / Cooling CMOS Miniaturization 130nm 90nm 65nm 45nm SOC 32nm 22nm

Sense, interact, power...: complex heterogeneous integration









**PACKAGE** key to adapt





















## SiP modules: key for complex/dense electronics

#### SiP modules: paramount solution to make testability easier & improve yield

#### > Advantages

- Significantly increased board density
- Heterogeneous functionalities in a package
- Improved technical performances
- Reduced mother board complexity
- Re-usable module & reduction of development time

#### > Constraints

- NRE in low volume
- Thermal management
- Complex supply chain management
- Obsolescence management
- Multi-sourcing

|                     | Nb of Pts | Aera mm² | Nb of Pts/ dm <sup>2</sup> |  |
|---------------------|-----------|----------|----------------------------|--|
| Top board           | 1984      |          | 9200                       |  |
| With SIP            | 1984+230  | 2156     | 10500                      |  |
| Bottom board        | 2921      | 2156     | 13900                      |  |
| With SIP 2921 + 943 |           |          | 57300                      |  |





| Total density          | 23100 Pts /dm <sup>2</sup> |  |  |
|------------------------|----------------------------|--|--|
| Total density with SIP | 67800 Pts/dm <sup>2</sup>  |  |  |

SIP increase the total density by ~3



## PCB and assembly trend

#### PCB design trends driven by IC carrier

- > PCB has to accommodate the latest packaging trends
  - Finer pitch, increased I/O count: BGA, QFN, WLP packages, SiP modules
  - Increased density by embedding components into PCB or Si carriers
  - Increased challenge for solder mask







## Conductor deposition on polymer

#### Different processes like

- Molded Interconnect Devices
  - Address the coupling electrical/mechanical
    - **Mature with one layer**



- Fine line (typically 100µm)
  - Multilayer under development





- Fine line (typically 100μm)
  - Line definition function of drop size & surface energy













THALES

**NY Industries** 

**NY Industries** 

OPEN

## **Supply & value chain evolutions**

#### Added value in packaging development

> Strong competition between IC foundries & PCB makers

#### Heterogeneous integration at board level

Increase the complexity of supply chain





## Example of PCB embedding: complex supply chain

#### Chip / wafer post-process required for PCB embedding

- > RDL to adapt the die pitch to the PCB scale
- > Wafer thinning
- > Cu plating: Pad finish must be copper
- > Thermal management can require 2 Cu faces metallization





#### Si dies procurement hard point for low volume













Ref number- 2015 06 23

## 3D IC packaging supply chain















Fast evolution in service offered, from SME to large providers Partner selection must fit with roadmap



## Focus on examples: PCBA technology / Lead-Free assembly



Global Services / Template: 87204467-DOC-GRP-EN-002

## Focus on examples: PCB technology / HDI boards with µvias

#### **HDI** boards

- Development of test vehicles
- Incremental learning
- DfM & DfR establishment
- Collaboration with industrial & academic partner

Long development time for high-end applications

Stacked µvias used in Thales products



Only few & independent variables can be addressed at a time

Ref number- 2015.06.23
Thales Global Services / Template: 87204467-DOC-GRP-EN-002

## Technology/process introduction into new products

#### Reliability risk management is crucial before releasing a technology / process

- > Strong coupling with partners
- > Process maturity required before reliability assessment
- > Dedicated toolbox & methodologies to evaluate technologies & processes



## Tool box for advanced technologies / processes evaluation



#### Establishment of DfM & DfR rules

### DfM & DfR rules establishment is performed through DoE

#### Simulation is a very useful tool for

- ➤ To understand failure mechanism in complement to experimental DoE results
- To vary key parameters in a shorter time with a calibrated simulation model
- To substitute by sensitivity analysis an unknown physical parameter value



OPEN





THALES

- > New generation of SIP are extremely complex
  - Take the benefit of the huge evolution of the Si and III-V
  - Mix technologies (MEMS, sensors, digital, analog, power...)
  - Couple electronics & mechanics
    - Manage the reliability risk including thermal management in harsh environment
- > SIP / module using heterogeneous Technologies/Processes become mandatory
  - Therefore:
    - The supply chain is extremely complex
      - Management of Heterogeneous bricks linked with different "MRL"
      - In low volume, bare dies is a blocking point regarding procurement & Known Good Die

#### For High end electronics

- Considering the fast evolution of T/P driven by mass product
  - There is a strong need to develop T/P based on roadmap & in a frame of a network
    - In partnership with labs, institutes, spin off, SME...

OPEN

THALES

## THALES

# Thank you



www.thalesgroup.com

OPEN