

Prepared for and presented at Chemnitzer Seminar "System Integration Technologies", June 23-24, 2015

Oxide Free Direct Wafer Bonding

Outline

- Introduction
- Direct Wafer Bonding
- Oxide-free Direct Wafer Bonding
 - ComBond[®] Technology
- EVG[®]580 ComBond[®] Equipment
- Applications

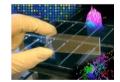
EVG – At a glance

- Founded in 1980 by DI Erich and Aya Maria Thallner as an engineering partner for the semiconductor industry.
- Headquartered in Austria, with fully owned subsidiaries in the USA, Japan, South Korea, China and Taiwan; worldwide network of representatives.
- More than 700 employees globally, approx. 600 at EVG headquarters in Austria.
- Recognized technology and market leader in wafer processing solutions for semiconductor, MEMS and nanotechnology applications.
- Installed base in excess of 2,000 tools in high volume production as well as university and industrial R&D institutions worldwide.
- EVG continues to invest a large double digit percentage of its revenue in application-oriented research and development.

Markets and Typical End Products

Advanced Packaging 3D Interconnect

Compound Semiconductor Silicon-Based Power Devices


CMOS Image Sensors

LEDs

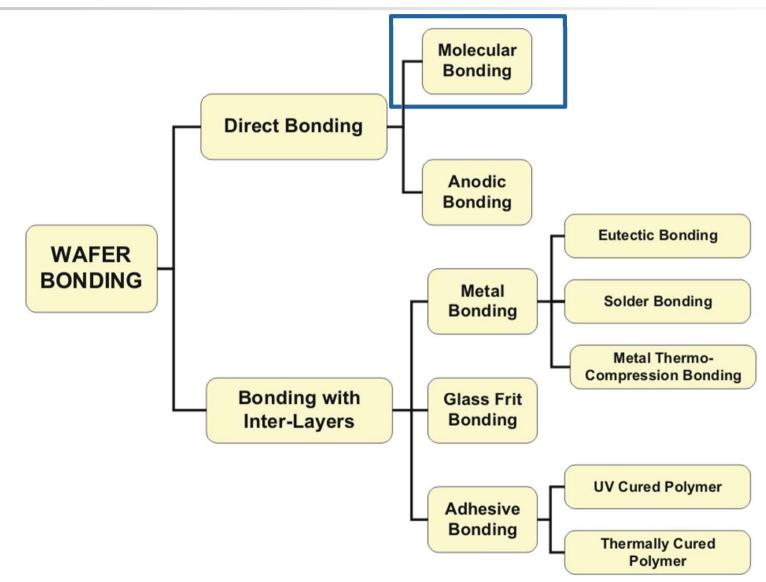
Motion sensors

DNA chips / micro labs

Micro processor wafers

Nanotechnology

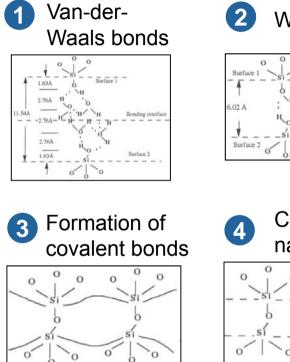
SOI (Silicon On Insulator) Engineered Substrates

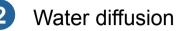


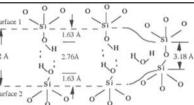
Direct Wafer Bonding

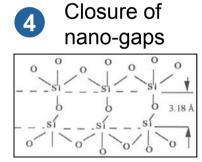
Wafer Bonding: Overview

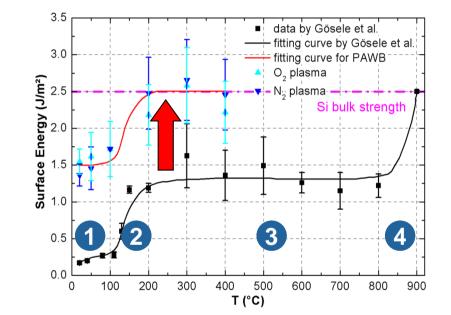
www.EVGroup.com


Direct Wafer Bonding Characteristics




- Initial spontaneous bonding occurs when surfaces are brought into physical contact.
- Covalent bonds between surfaces formed during application of heat.
- The resulting bond strength is as high as the bulk fracture strength.
- The resulting bond is permanent.


Classical and Plasma Activated Fusion Bond



Classical:

 SiO_2 viscosity due to high temperature annealing

 Plasma activated: Enhanced diffusion at low temperatures

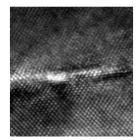
Plasma Activated Wafer Bonding

Requires thick oxide in the interface - N, plasma (1) (a) 1.6 Thick oxide \rightarrow - N₂ plasma (2) - O₂ plasma (1) Surface Energy (J/m²) 7.0 8.0 8.0 8.0 Electrical resistance \rightarrow - O₂ plasma (2) **Conductive interfaces not possible** RT covalent bonding possible, but industrially not practical Room temperature process not viable 0.0 1000 2000 3000 4000 Storage Time @ RT (h) Gemini ® FB EVG®810LT LowTemp™ Automated Production **Plasma Activation System Fusion Bonding System**

See: T. Plach, K. Hingerl, S. Tollabimazraehno, G. Hesser, V. Dragoi and M. Wimplinger, J. Appl. Phys., 113, 094905 (2013).

Oxide-free Direct Wafer Bonding

Motivation for ComBond®


- Motivation
 - Covalent bonding technology
 - Oxide-free, conductive interface
 - Room temperature or low temperature process
 - Applications
 - Heterogeneous integration
 - Layer transfer for advanced substrates
 - Improved metal/metal bonding
 - High vacuum encapsulation (MEMS)

Particle-free and void free bonding

Si/Si bond interface – minimum amorphous layer

GaAs/InP bond interface – minimum amorphous layer

- Requirements
 - Surface activation (oxide removal, avoid roughness increase)
 - High vacuum (retain oxide-free surface)
 - Low (room) temperature bonding process (retain crystal structures, minimize amorphous layer growth, avoid stresses due to CTE mismatch)
- Solutions
 - ComBond®: Gentle surface sputtering using energized projectiles of an inert gas effectively removes oxides and other molecular contaminations. Re-oxidation is prevented by processing in high or ultra high vacuum.

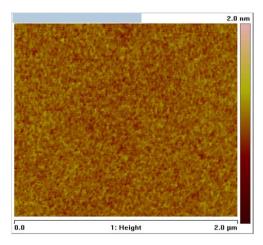
ComBond® Process

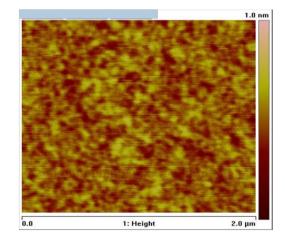
Why does ComBond[®] require high vacuum?

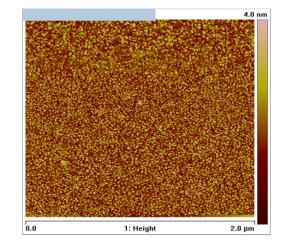
→ If an oxide-free interface is required, it is not enough to remove the oxide. Re-deposition of oxide needs to be prevented, as well.

Base Pressure [mbar]	Vacuum Classification	Comment	Time to form 1 monolayer [s]	
1000	Rough Vacuum	Atmosphere	4.10E-08	Immediate reoxidation
100	Rough Vacuum		4.10E-07	
10	Rough Vacuum		4.10E-06	
1	Rough Vacuum		4.10E-05	
0.1	Rough Vacuum	EVG [®] 810LT process pressure level	4.10E-04	
0.01	Rough Vacuum		0.004	
0.001	Rough / Medium Vacuum	EVG [®] 810LT base pressure level	0.041	
1.00E-04	Medium Vacuum		0.41	
1.00E-05	Medium Vacuum	EVG [®] 580 ComBond [®] process pressure level	4.10	
1.00E-06	Medium / High Vacuum		41.05	
1.00E-07	High Vacuum		410.45	
1.00E-08	High Vacuum	EVG [®] 580 ComBond [®] base pressure level	4104.54	Enough time left to
1.00E-09	High / Ultra High Vacuum		4.10E+04	contact wafers before
1.00E-10	Ultra High Vacuum		4.10E+05	reoxidation occurs.

Assumptions:

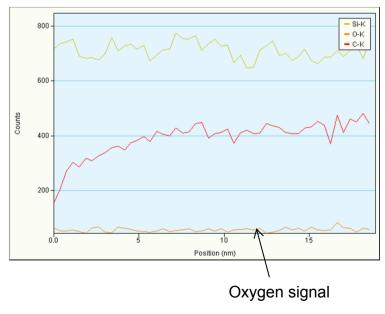

- Each H₂O molecule from background contamination that hits the Si surface will stick.
- H₂O partial pressure is 10 % of base pressure.


- High vacuum process (<10⁻⁸ mbar)
- Surface activation and oxide-removal
- Room (low) temperature bonding
 - Oxide-free interface
 - Minimum thickness of amorphous layers
 - Minimum crystal dislocations

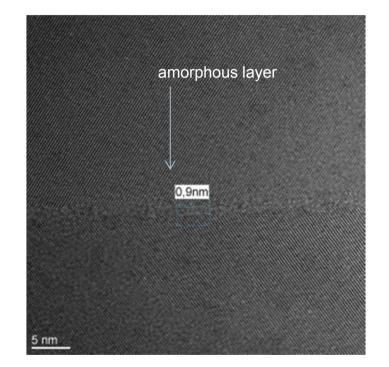

- Surface activation
 - Dry etching with energized particles
 - Uniform oxide removal
 - Low surface roughness increase

Silicon: Roughness $RMS(R_q) < 0.1nm$

GaAs: Roughness RMS(R_q) <0.1nm

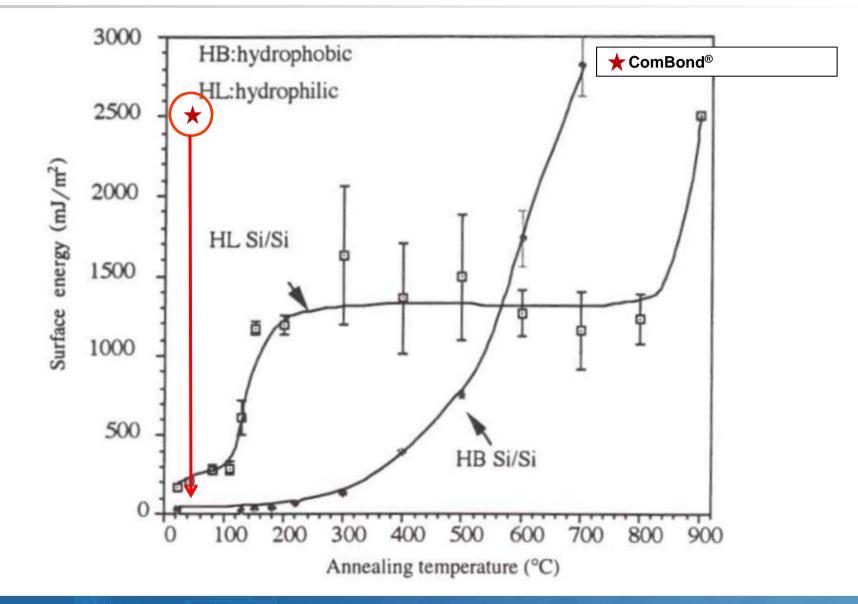


InP: Roughness $RMS(R_q) < 0.6nm$



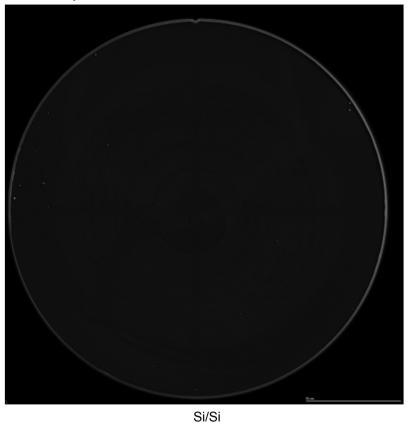
• Si-Si Bond

HR-TEM image reveals an amorphous layer of <1 nm thickness in the bond interface.

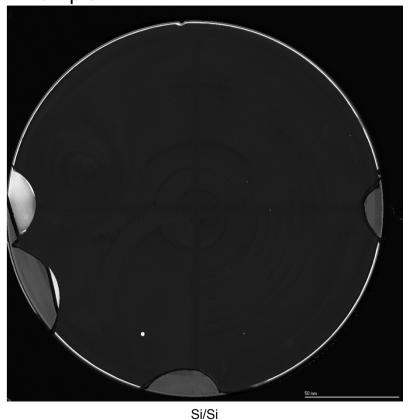

Oxide-free!

Si/Si: amorphous layer thickness <1nm

ComBond® Process Results



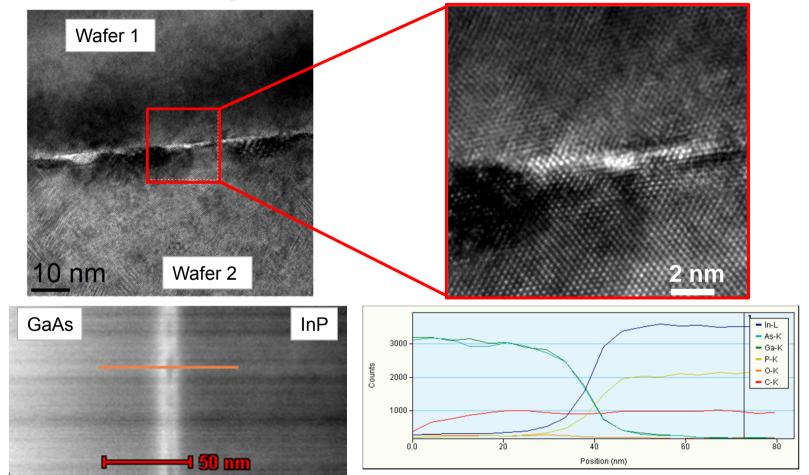
ComBond® Process Results



C-SAM scan

Example 1

Example 2



Bond strength > 2.5 J/m² (all measurement positions broken)

ComBond® Process Results

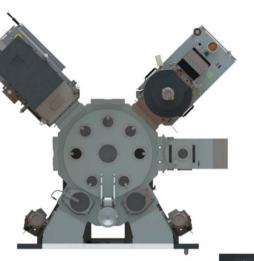
GaAs / InP wafer bonding

Oxide-free Interface!

EV Group Confidential and Proprietary

Equipment Soultions

EVG®580 ComBond® Equipment


- Requirements
 - Surface activation (oxide removal, avoid roughness increase)
 - High vacuum (retain oxide-free surface)
 - Low (room) temperature bonding process (retain crystal structures, minimize amorphous layer growth, avoid stresses due to CTE mismatch)
- Solutions

EVG®580 ComBond® Equipment

- Fully automated high vacuum system
- Modular design
- Flexible configuration
- Cassettes or EFEM
- Wafers up to 200 mm
- Throughput: 20 units / hour

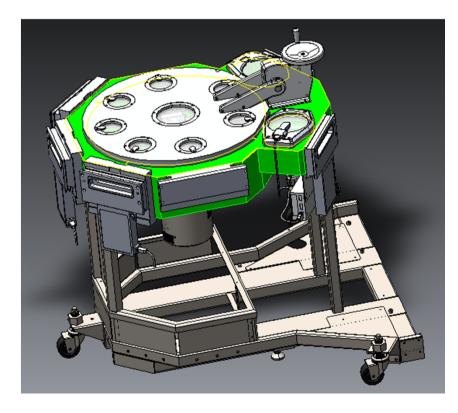
BASIC FUNCTIONS
Vacuum bake
Optical pre-aligner
Robot unit with end-effector(s) and
controllers
Vacuum system with gauge,
turbomolecular and roughing
pump
View ports
Wafer flipping

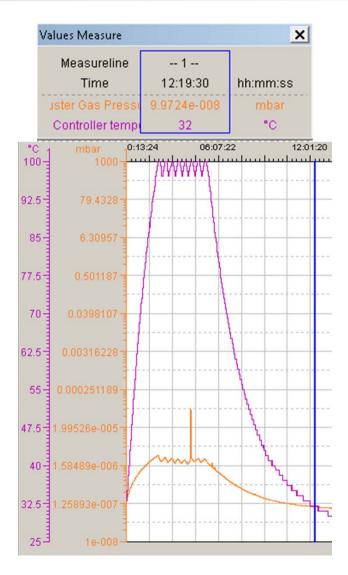
VACUUM CAPABILITY	Pressure [mbar]
Handling system	< 7*10 ⁻⁸
Cassette load lock	<1*10 ⁻⁶
CAM module	< 9*10 ⁻⁸
Bond module	< 9*10 ⁻⁸

CONFIGURATIONS	3 Process Modules	5 Process Modules	6 Process Modules
Wafer size	up to 200 mm	up to 200 mm	up to 200 mm
Load lock	1 cassette station or 1 manual load port	2 cassette stations or EFEM with up to 4 cassettes	2 cassette stations or EFEM with up to 4cassettes
CAM module	1	2	2
Bond chamber	1	1	1
Free ports		1	2
Robot	Single arm	Dual arm	Dual arm

EVG®580 High Vacuum Cluster

- Operated at base pressures < 7 x 10⁻⁸ mbar
- Maintains the fully automated wafer transport and handling
- Maximum six process modules
- Maximum wafer stack height 4 mm
- Buffer station for up to two wafers
- Single or dual arm robot
- Integrated bake out
- Optical prealigner
- Automatic wafer centering sensor
- Optical sensor for wafer detection
- Load lock
 - Manual, cassette, EFEM loading
 - Double pitch cassette for up to twelve wafer
 - Pressure recovery 3 minutes to $\leq 6 \times 10^{-5}$ mbar
 - High speed vent (vacuum to atm) ~ 1 min



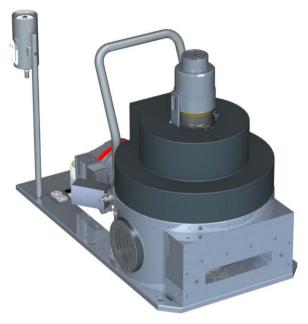


High Vacuum Handling System Transport Chamber

- Bake out of chamber wall
- Base pressure (with bake < 24h)
 - < 1 x 10⁻⁷ mbar Turbo pump
 - < 7 x 10⁻⁸ mbar Cryo pump (optional)

EVG[®]580 ComBond[®] Activation Module (CAM)

- ComBond[®] Activation Module (CAM)
 Surface modification treatment to allow
 covalent bonding at or near room temperature.
- The CAM surface treatment technology achieves
 - Oxide-free and particle-free surfaces
 - Low surface roughness
 - Uniform oxide removal and surface activation
 - High throughput
- Process chamber pressure
 - Base pressure $< 9 \times 10^{-8}$ mbar
 - Process pressure ~1 x 10⁻⁵ mbar



CAM Specifications	
Roughness increase	< 0.1 nm
Cleanliness	< 1 x 10 ¹⁰ metal ions / cm ² < 5 particles (> 0.2 µm) added per wafer
Oxide removal (Si)	up to 15 nm / min

EVG®580 Bond Module

- Electrostatic chucks
- Heated and not heated version
- Enhanced vacuum level of < 9 x 10 ⁻⁸ mbar
- Open space between heaters of 25 mm for enhanced outgassing
- Active water cooling of top and bottom heaters

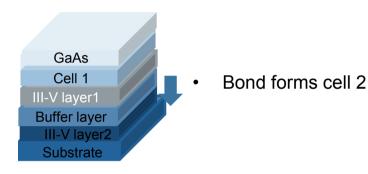
EVG 580 Bond Module	Technical Data		
Piston force	Up to 100 kN		
Maximum temperature	400 °C		
Heating rate	45 °C / min		
Wafer stack height	< 4 mm		
Purge gas lines	1		

EVG®580 ComBond® Configurations

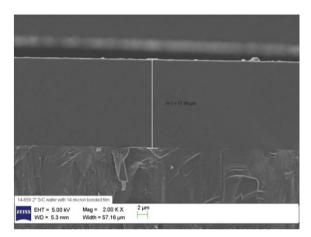
	1	2	3	4	5
Configuration					
Process Modules	3	5	5	6	6
Cassette Station	1 (12 slot cassette) optional single substrate loading (up to 2 substrates)	2 (12 slot cassette)	up to 4 (25 slot cassette)	2 (12 slot cassette)	up to 4 (25 slot cassette)
*Estimated Throughput [Wafer/h]	~ 8	~ 13	~ 15	~ 16	~ 20

*calculated with current BKM Recipe and max. amount of process modules

Applications


Heterogenous integration, layer transfer, MEMS,...

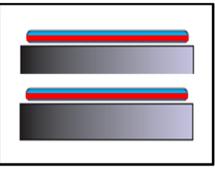
Applications - Examples



 Multi-junction solar cells based on III-V semiconductors

- Bonding of solar cell stacks to bottom cells
- Bonding of III-V layers to form a cell structure with certain wavelength sensitivity
- Any combination possible (CS on CS or Si, Ge,.)
- Certain buffer layers not required
- Room temperature bonding process
- Electrically conductive bond interface

Power Devices


Crystalline SiC on polycrystalline SiC*

- Vertical Power Devices need conducting interface
- Oxides can act as trap states increasing resistance and reducing device performance
- Engineered substrates as growth templates can save costs

*ComBond Result, Courtesy of GT Advanced Technology

- Improved Vacuum Encapsulation
- Wafers are baked out prior to aligning and clamping.
 - Will be open faced

- Much larger spacing then when clamped
 - Typical clamp thickness is 100-200µm
 - Stacked bakeout module will can have spacing of 10-20mm
- This increased spacing improves the desorption of water molecules from the surface of the wafer by increasing the probability that the desorbed water molecule will 'escape'

Summary

- Surface activation is needed to achieve superior bonding quality at low temperatures through formation of covalent bonds
- Advanced applications need advanced surface activation methods to
 - Encapsulate high vacuum (MEMS)
 - Remove surface oxides
 - Eliminate the need for thermal annealing
- EVG[®]580 ComBond[®] represents a solution to such advanced application demands
- **Proven facts**: EVG[®]580 ComBond[®] and its CAM are capable to
 - Maintain high vacuum levels at ~ 10⁻⁸ mbar
 - Perform with highest cleanliness
 - Effectively remove surface oxides on various wafer materials
 - Retain or even improve surface roughness after activation
 - Produce real room temperature Si-Si wafer bonds with maximum bond strength

Thank you!

www.EVGroup.com