

FAP.

Bettina Ottinger^{1,2}, Joshua Holverscheid¹, Sebastian König¹, Edgar Jerichow¹, Sebastian Lunz¹, Mario Sprenger¹, Dr. Lars Müller¹, Dr. Christian Goth¹, Prof. Dr. Jörg Franke² Vitesco Technologies Germany GmbH¹, Institute for Factory Automation and Production Systems Friedrich-Alexander University Erlangen – Nürnberg²

based on a presentation at EPTC 2022 in Singapore [*]

ELECTRIFIED. EMOTION. EVERYWHERE.

OUR VISION

GLOBAL FOOTPRINT

1 INTRODUCTION

2 METHODS

3 RESULTS AND DISCUSSION

4 SUMMARY

INTRODUCTION – POWER MODULE

Comparison of four Sn-based die attach materials during active power cycling under equal conditions

INTRODUCTION – POWER MODULE

Comparison of four Sn-based die attach materials during active power cycling under equal conditions

1 INTRODUCTION

2 METHODS

3 RESULTS AND DISCUSSION

4 SUMMARY

METHODS - ACTIVE POWER CYCLING TEST

Design of the active power cycling test:

- Based on the ECPE Guideline 324 (AQG 324) [5]
- Applying a constant load current of about 250 A
- Temperature swing ΔT =100K (T_{min}= 40 °C and T_{max}= 140°C)
- Duration of each cycle t_{on} =3s and t_{off} =6s

[4] Liao,L. et al., "Power cycling test and failure mode analysis of high-power module," *ICEP Proceedings* (2016), pp. 372-377
 [5] Automotive AQG 324, "https://www.ecpe.org/index.php?elD=dumpFile&t=f&f=23930&token=ab9f61d08229d223b10&cb44f00aa4db948ad4e4" (Accessed: september 20, 2022)

METHODS - QUALITY OF THE DIE ATTACH

Figure: Image of X-ray or SAM analysis

Quality of the soldered die interconnection via X-ray analysis or SAM analysis:

- Measuring the local maximum void of each die
- Calculation of the maximum void area ratio over the total die surface

→ All soldered die attaches are lower than the limited maximum void area ratio of (5-10%) [6]

[6] Chang, J. et al., "Finite Element Modeling Predicts the Effect of Voids on Thermal Shock Reliability and Thermal Resistance of Power Devices." Welding Journal (2006), pp. 63 -70

1 INTRODUCTION

2 METHODS

3 RESULTS AND DISCUSSION

4 SUMMARY

RESULTS - INITIAL MICROSTRUCTURE

RESULTS - INITIAL MICROSTRUCTURE

Bulk alloyed solder materials Basic microstructure of the bulk solder	SAC305 50 µm • Fine and homogeneous microstructure of the bulk solder	SnSb5 50 µm • Solidified solder structures • Homogeneous microstructure of the bulk solder	SnSb10 50 μm
IMC at the interfaces	 Homogenous and needle-like crystalline structure of the IMC Cu₆Sn₅ layer 2-3 µm thickness of Cu₆Sn₅ IMC layer 	 Homogenous and needle-like crystalline structure of the IMC Cu₆Sn₅ layer 2-3 µm thickness of Cu₆Sn₅ IMC layer 	 2-3 μm thickness of Cu₆Sn₅ IMC layer

RESULTS - INITIAL MICROSTRUCTURE

RESULTS - ACTIVE POWER CYCLING TEST

50 % higher lifetime with layered diffusion solder material Sn-Cu-Sn compared to SAC305

RESULTS - MICROSTRUCTURE AFTER POWER CYCLING

RESULTS - MICROSTRUCTURE AFTER POWER CYCLING

Bulk alloyed solder materials	SAC305 50 µm	SnSb5 50 μm	SnSb10 50 µm
Basic microstructure bulk solder	 Coarsening of the microstructure Cu₆Sn₅ IMC in the middle of the solder layer Defect zones over the entire solder Crack initiation inside the bulk solder 	 Coarsening of the microstructure Cu₆Sn₅ IMC in the middle of the solder layer Large local defect zones Crack initiation inside the bulk solder 	 Coarsening of the microstructure Cu₆Sn₅ IMC in the middle of the solder layer Blocky phases couldn't be detected →Large local defect zones Crack initiation inside the bulk solder
IMC at the interfaces	Levelled needle-like crystalline structure at the IMC	Levelled needle-like crystalline structure at the IMC	Levelled needle-like crystalline structure at the IMC

RESULTS - MICROSTRUCTURE AFTER POWER CYCLING

DISCUSSION

Table: Material properties [7,8]:

The bulk alloyed solders SAC 305, SnSb5 and SnSb10:

- Strong metallic bond at the interfaces with Cu₆Sn₅
- Growth of IMC in the the solder layer → crack initiation
- Higher homologous temperature at T_{max}=140 °C indicates earlier material fatigue

The layered diffusion solder (Sn-Cu-Sn):

- Strong metallic bond at the interfaces with Cu₃Sn and Cu₆Sn₅
- Cu₆Sn₅ columns over the entire Sn-solder layer stabilized and hardened the die attach against thermo-mechanical stress

Solder	SAC 305	SnSb5	SnSb10	Cu ₆ Sn ₅	Cu₃Sn	Cu	Sn
Melting temperature T _m	217 °C	240 °C	250 °C	415 °C	676 °C	1085 °C	232 °C
Homologous temperature at 140 °C	0,64	0,58	0,56	0,34	0,21	0,13	0,60
CTE ppm/K	21	27	/	16,3	18,2 – 19,0	17,3	21

[7] Ehrhardt, Christian, Matthias Hutter, Constanze Weber, and Klaus-Dieter Lang, "Active Power Cycling Using Copper Tin TLPB Joints as New Die-Attach Technology," *PCIM Europe Nuremberg*, Germany, 19-21 May 2015, pp. 1268-1275 [8] Syed-Khaja, Aarief. "Diffusion Soldering for the High-Temperature Packaging of Power Electronics," FAU University Press (2018), pp. 31-33

1 INTRODUCTION

2 METHODS

3 RESULTS AND DISCUSSION

4 SUMMARY

SUMMARY

50 % higher lifetime with layered diffusion solder material **PFDS400**®

SUMMARY

- DOE study has been performed on the power module
- A slight increase of maximum principal stresses is observed when increasing with IMP thickness stresses are not critical
- Cyclic equivalent plastic strain decreases with increase in IMP thickness low chances of die attach failure
- Von Mises stresses on metallization layer at die attach interface not critical
- Higher the IMP thickness tends to have higher the lifetime of the power module with respect to die attach

AGENDA

1 INTRODUCTION

2 METHODS

3 RESULTS AND DISCUSSION

4 SUMMARY

- Further investigations are planned with improved topside connection on SiC dies
- Additional FEM analysis will provide further insight in lifetime potential of TLPS layers
- Geometrical stress optimization will be supported by FEM
- Activities will be supported by FHG ENAS

